区间dp(低价回文)

【题目大意】

  追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统。他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身份信息。目前,每个身份都是由一个字符串组成的,长度为M (1≤M≤2000),所有的字符都取自小写的罗马字母。

奶牛们都是顽皮的动物,有时她们会在通过扫描器的时候倒着走,这样一个原来身份为abcb的奶牛就可能有两个不同的身份了(abcb和bcba),而如果身份是abcba的话就不会有这个问题了。

约翰想改变奶牛们的身份,使他们不管怎么走读起来都一样。比如说,abcb可以在最后加个a,变成回文abcba;也可以在前面加上bcb,变成回文bcbabcb;或者去除字母a,保留的bcb也是一条回文。总之,约翰可以在任意位置删除或插入一些字符使原字符串变成回文。

不巧的是,身份标签是电子做的,每增加或删除一个字母都要付出相应的费用(0≤代价≤10000)。给定一头奶牛的身份标签和增加或删除相关字母的费用,找出把原来字符串变成回文的最小费用。注意空字符串也是回文。

【输入格式】

  第一行:两个用空格分开的整数:N和M 第二行:一个长度恰好为M的字符串,代表初始的身份标签 第三行到第N+2行:每行为一个用空格分开的三元组:其中包括一个字符和两个整数,分别表示增加或删除这个字符的费用

【输出格式】
  第一行:只有一个整数,表示改造这个身份标签的最小费用

【样例】
  样例输入
  3 4
  abcb
  a 1000 1100
  b 350 700
  c 200 800

【样例输出】
  900

【大体思路】

   首先,要搞明白的是,插入和删除操作其实是等价的;

  例:

    abcb,我们可以在右面插入a使其成为回文,也可以在左面删去a使其成为回文,效果是一样的;

  故,对于字符k有v[k-'a']=min(insert[k],delete[k]);

  对于最新扩展的区域,我们需要保证首尾字母相等,即a[i]=a[j],那么dp[i][j]就可以由上一状态转移过来,即dp[i][j]=dp[i+1][j-1];

  如果首尾字母不相等,那么我们比较左右两端修改所需要的代价,取代价最小者,即dp[i][j]=min(dp[i+1][j]+v[a[i]-'a'],dp[i][j-1]+v[a[j]-'a']);

【代码如下】

#include<bits/stdc++.h>

using namespace std;

const int inf=1e8;
const int maxn=2000;
int dp[maxn+20][maxn+20];
int n,m,v[30];
char a[maxn+20];
void read(){//读入数据
    scanf("%d%d",&n,&m);
    scanf("%s",&a);
    char ch;
    int v1,v2;
    for(int i=1;i<=n;i++){
        scanf(" %c %d%d",&ch,&v1,&v2);
        v[ch-'a']=min(v1,v2);//求修改每个字母需要的最小花费
    }
    
}
int main(){
    read();
    for(int j=1;j<m;j++){
        for(int i=j-1;i>=0;i--){
            dp[i][j]=inf;//因为要求最小值,故赋值为无穷大
            if(a[i]==a[j])//如果两端相等,继承上一状态
                dp[i][j]=dp[i+1][j-1];
            else
                dp[i][j]=min(dp[i+1][j]+v[a[i]-'a'],dp[i][j-1]+v[a[j]-'a']);//如果两端不相等,比较选择最优
        }
    }

    printf("%d\n",dp[0][m-1]);
    return 0;
    
} 

 

posted @ 2020-05-14 19:25  sodak  阅读(390)  评论(3编辑  收藏  举报