Catch That Cow

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 61317   Accepted: 19155

Description

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

Input

Line 1: Two space-separated integers: N and K

Output

Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

Sample Input

5 17

Sample Output

4

Hint

The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.

Source

 
 
RE: 坐标轴上有两个点(a、b), 求 a 接近 b 所需走的最小步数;
  有三种走法,(x-1)、 (x+1)、(2*x);
  a > b  → → 输出;
  else :: Bfs;
  
 1 #include <queue>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <iostream>
 5 using namespace std;
 6 
 7 const int maxn = 100000 + 5;
 8 int vis[maxn], cnt[maxn];
 9 queue <int> q;
10 
11 void Bfs()
12 {
13     int nx;
14     while(!q.empty())
15     {
16         int x = q.front();  q.pop();
17         for(int i = 0; i < 3; i++)    //三种走法; 
18         {
19             if(i == 0) nx = x + 1;
20             else if(i == 1) nx = x - 1;
21             else nx = 2 * x;
22             if(nx >= 0 && nx <= 100000 && !vis[nx])  //遍历到最后找最优?::剪枝? 
23             {
24                 vis[nx] = 1;
25                 cnt[nx] = cnt[x] + 1;
26                 q.push(nx);     
27             } 
28         }     
29     }
30 }
31 
32 int main()
33 {
34     int m, n;
35     while(~scanf("%d %d", &m, &n))
36     {
37         if(m > n)
38         {
39             printf("%d\n", m - n);
40             return 0;
41         }
42         memset(vis, 0, sizeof(vis));
43         vis[m] = 1;
44         cnt[m] = 0;
45         q.push(m);
46         Bfs();
47         printf("%d\n", cnt[n]);
48     } 
49     return 0;
50 }

 

 

 
  
posted on 2015-08-06 18:53  cleverbiger  阅读(195)  评论(0编辑  收藏  举报