进阶实验8-2.2 特殊堆栈 (30分)-栈+树状数组+二分法

 

 

 

 解题思路:

尝试用堆排,发现超时

后在网上学习到树状数组的方法,终AC

推荐容易树状数组的一篇大牛blog https://www.cnblogs.com/hsd-/p/6139376.html

树状数组的查询和修改的复杂度均为log(n)

 

#include <stdio.h>
#include <malloc.h>
#include <string.h>
#define Max 100000
int tree[Max]={0};//存储叶子结点,叶子结点值为0表示不存在堆栈,值为1表示在堆栈中有1个,值为2表示在堆栈中有2个,以此类推
int n;
int cnt=0;
typedef struct {
    int *Data;
    int Top;
    int MaxSize;
}*Stack;
Stack CreateStack(int size) {
    Stack S=(Stack)malloc(sizeof(Stack));
    S->Data=(int *)malloc(sizeof(int)*size);
    S->MaxSize=size;
    S->Top=-1;
    return S;
}
int IsEmpty(Stack S) {
    if(S->Top==-1)
        return 1;
    return 0;
}
int IsFull(Stack S) {
    if(S->Top==S->MaxSize-1)
        return 1;
    return 0;
}
int Pop(Stack S) {
    if(IsEmpty(S))
        return -1;
    return S->Data[S->Top--];
}
int Push(Stack S,int x) {
    if(IsFull(S))
        return 0;
    S->Data[++S->Top]=x;
    return 1;
}
//求二进制x最低位1,如lowbit(6)=2;(0110)&&(1010)=2
int lowbit(int x) { return x&(-x); }
//获得在x之前的个数
int getsum(int x) { int i; int sum=0; for(i=x; i>0; i-=lowbit(i)) sum+=tree[i]; return sum; } void add(int x,int y) { int i; for(i=x; i<Max; i+=lowbit(i)) { tree[i]+=y; } } void PeekMedian() { int left=1,right=Max,k=(cnt+1)>>1; while(left<right) { int mid=(left+right)>>1; if(getsum(mid)>=k) right=mid; else left=mid+1; } printf("%d\n",left); } int main() { scanf("%d",&n); Stack S=CreateStack(n); char c[11]; int i; for(i=0; i<n; i++) { scanf("%s",c); if(c[1]=='o') { if(IsEmpty(S)) printf("Invalid\n"); else { int tmp=Pop(S); printf("%d\n",tmp); add(tmp,-1); cnt--; } } else if(c[1]=='u') { int x; scanf("%d",&x); Push(S,x); add(x,1); cnt++; } else { if(IsEmpty(S)) printf("Invalid\n"); else { PeekMedian(); } } } return 0; }

 

posted @ 2020-03-26 17:28  跃鱼  阅读(590)  评论(0编辑  收藏  举报