LRU Cache实现

LRU Cache

描述:

  Design and implement a data structure for Last Recently Used(LRU) Cache. It should support the following operations: get and set.

  get(key): Get the value(will always be positive) of the key if the key exists in the cache, otherwise return -1.

  set(key, value): Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

分析:

  为了使查找、插入和删除都有较高的性能,使用一个双向链表(std::list)和一个哈希表(std::unordered_map),因为:

  1. 哈希表保存每个节点的地址,可以基本保证在O(1)时间内查找节点。

  2. 双向链表插入和删除效率高,单向链表插入和删除时还要查找节点的前驱节点。

  具体实现细节:

  1. 越靠近链表头部,表示节点上次访问距离现在时间最短,尾部的节点表示最近访问最少。

  2. 访问节点时,如果节点存在,把该节点交换到链表头部,同时更新哈希表中该节点的地址。

  3. 插入节点时,如果cache的size达到了上限capacity,则删除尾部节点,同时要在哈希表中删除对应的项。新节点插入到链表头部。

代码:

class LRUCache{
private:
  struct CacheNode{
    int key;
    int value;
    CacheNode(int k, int v) : key(k), value(v){}
  };
public:
  LRUCache(int capacity){
    this->capacity = capacity;
  }

  int get(int key){
    if (cacheMap.find(key) == cacheMap.end()){
    return -1;
  }
  // 把当前访问的节点移到链表头部,并且更新map中该节点的地址
  cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
  cacheMap[key] = cacheList.begin();
  return cacheMap[key]->value;
  }

  void set(int key, int value){
    if (cacheMap.find(key) == cacheMap.end()){
      if (cacheList.size() == capacity){ //删除链表尾部节点(最少访问的节点)
        cacheMap.erase(cacheList.back().key);
        cacheList.pop_back();
      }

      //插入新节点到链表头部,并且在map中增加该节点      

      cacheList.push_front(CacheNode(key, value));
      cacheMap[key] = cacheList.begin();
    }

    else{

      //更新节点的值,把当前访问的节点移到链表头部,并且更新map中该节点的地址

      cacheMap[key]->value = value;
      cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
      cacheMap[key] = cacheList.begin();

    }

  }

private:

  int capacity;

  std::list<CacheNode> cacheList;

  unordered_map<int, std::list<CacheNode>::iterator> cacheMap;

};

posted @ 2017-11-29 10:30  飘舞的雪  阅读(215)  评论(0编辑  收藏  举报