设计模式
工厂模式 BeanFactory
装饰器模式 BeanWrapper
代理模式 AopProxy
单例模式 ApplicationContext
委派模式 DispatcherServlet
策略模式 HandlerMapping
适配器模式 HandlerApdapter
模板方法模式 JdbcTemplate
观察者模式 ContextLoaderListener
单例模式
单例模式一
public class Singleton { private volatile static Singleton singleton; private Singleton (){} public static Singleton getSingleton() { if (singleton == null) { synchronized (Singleton.class) { if (singleton == null) { singleton = new Singleton(); } } } return singleton; } }
public class Singleton { /* 私有构造方法,防止被实例化 */ private Singleton() { } /* 此处使用一个内部类来维护单例 , SingletonFactory默认在classLoader中不会被加载, 只有在使用到该静态类时才会被加载 */ private static class SingletonFactory { private static Singleton instance = new Singleton(); } /* 获取实例 */ public static Singleton getInstance() { return SingletonFactory.instance; } /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */ public Object readResolve() { return getInstance(); } }
三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。
对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。
接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。
类适配器
public class Source { public void method1() { System.out.println("this is original method!"); } } public interface Targetable { /* 与原类中的方法相同 */ public void method1(); /* 新类的方法 */ public void method2(); } public class Adapter extends Source implements Targetable { @Override public void method2() { System.out.println("this is the targetable method!"); } } public class AdapterTest { public static void main(String[] args) { Targetable target = new Adapter(); target.method1(); target.method2(); } }
对象适配器
public class Wrapper implements Targetable { private Source source; public Wrapper(Source source){ super(); this.source = source; } @Override public void method2() { System.out.println("this is the targetable method!"); } @Override public void method1() { source.method1(); } } public class AdapterTest { public static void main(String[] args) { Source source = new Source(); Targetable target = new Wrapper(source); target.method1(); target.method2(); } }
接口适配器
public interface Sourceable { public void method1(); public void method2(); } public abstract class Wrapper2 implements Sourceable{ public void method1(){} public void method2(){} } public class SourceSub1 extends Wrapper2 { public void method1(){ System.out.println("the sourceable interface's first Sub1!"); } } public class SourceSub2 extends Wrapper2 { public void method2(){ System.out.println("the sourceable interface's second Sub2!"); } } public class WrapperTest { public static void main(String[] args) { Sourceable source1 = new SourceSub1(); Sourceable source2 = new SourceSub2(); source1.method1(); source1.method2(); source2.method1(); source2.method2(); } }
装饰器模式
顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,
外观模式
为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。
客户端不需要知道系统内部的复杂联系,整个系统只需提供一个"接待员"即可.
举个栗子: 去医院看病,可能要去挂号、门诊、划价、取药,让患者或患者家属觉得很复杂,如果有提供接待人员,只让接待人员来处理,就很方便。
举个栗子2: 电脑整机是 CPU、内存、硬盘的外观。有了外观以后,启动电脑和关闭电脑都简化了。
外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)
public class Computer { private CPU cpu; private Memory memory; private Disk disk; public Computer(){ cpu = new CPU(); memory = new Memory(); disk = new Disk(); } public void startup(){ System.out.println("start the computer!"); cpu.startup(); memory.startup(); disk.startup(); System.out.println("start computer finished!"); } public void shutdown(){ System.out.println("begin to close the computer!"); cpu.shutdown(); memory.shutdown(); disk.shutdown(); System.out.println("computer closed!"); } }