摘要:
附:USACO中的背包问题USACO是USA Computing Olympiad的简称,它组织了很多面向全球的计算机竞赛活动。USACO Trainng是一个很适合初学者的题库,我认为它的特色是题目质量高,循序渐进,还配有不错的课文和题目分析。其中关于背包问题的那篇课文 (TEXT Knapsack Problems) 也值得一看。另外,USACO Contest是USACO常年组织的面向全球的竞赛系列,在此也推荐NOIP选手参加。我整理了USACO Training中涉及背包问题的题目,应该可以作为不错的习题。其中标加号的是我比较推荐的,标叹号的是我认为对NOIP选手比较有挑战性的。题目列 阅读全文
摘要:
P11: 背包问题的搜索解法《背包问题九讲》的本意是将背包问题作为动态规划问题中的一类进行讲解。但鉴于的确有一些背包问题只能用搜索来解,所以这里也对用搜索解背包问题做简单介绍。大部分以01背包为例,其它的应该可以触类旁通。简单的深搜对于01背包问题,简单的深搜的复杂度是O(2^N)。就是枚举出所有2^N种将物品放入背包的方案,然后找最优解。基本框架如下:procedure SearchPack(i,cur_v,cur_w) if(i>N) if(cur_w>best) best=cur_w return if(cur_v+v[i]<... 阅读全文
摘要:
P09: 背包问题问法的变化以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的max改成min即可。下面说一些变化更大的问法。输出方案一般而言,背包问题是要求一个最优值,如果要求输出这个最优值的方案,可以参照一般动态规划 阅读全文
摘要:
P08: 泛化物品定义考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0..V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组h[0..V],给它费用v,可得到价值h[V]。一个费用为c价值为w的物品,如果它是01背包中的物品,那么把它看成泛化物品,它就是除了h(c)=w其它函数值都为0的一个函数。如果它是完全背包中的物品,那么它可以看成这样一个函数,仅当v被c整除时有h(v)=v/c*w,其它 阅读全文
摘要:
P07: 有依赖的背包问题简化的问题这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同时依赖多件物品。算法这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件, 阅读全文
摘要:
P06: 分组的背包问题问题有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。算法这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有:f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于组k}使用一维数组的伪代码如下:for 所有的组k for v=V..0 for 所有的i属于组k ... 阅读全文
摘要:
P05: 二维费用的背包问题问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有 一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和 b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。算法费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b 阅读全文
摘要:
P04: 混合三种背包问题问题如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?01背包与完全背包的混合考虑到在P01和P02中给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:for i=1..N if 第i件物品属于01背包 for v=V..0 f[v]=max{f[v],f[... 阅读全文
摘要:
P03: 多重背包问题题目有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。基本算法这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}复杂度是O(V*Σn[i])。转化为01背包问题另一 阅读全文