UVa11187
莫勒定理,证明如下:
请结合下图看代码:
#include <iostream> #include <math.h> #include <iomanip> using namespace std; #define pi acos(-1.0) double lawofcosine(double a, double b, double c) { return acos((a*a+b*b-c*c)/(2.0*a*b)); } double getangle(double x1, double y1, double x2, double y2) { return atan2(1.0*(y2-y1),1.0*(x2-x1)); } double getdis(double x1, double y1, double x2, double y2) { return sqrt((y1-y2)*(y1-y2)+(x1-x2)*(x1-x2)); } double solveequation_x(double x1, double y1, double x2, double y2, double k1, double k2) { return (y1-y2+k2*x2-k1*x1)/(k2-k1); } typedef struct point { double x, y; } p; int main() { p A, B, C, D, E, F; int n; cin>>n; while(n--) { cin>>A.x>>A.y>>B.x>>B.y>>C.x>>C.y; double a,b,c; //cout << A.x << ' ' << A.y << ' ' << B.x << ' ' << B.y << ' ' << C.x << ' ' << C.y << endl; a = getdis(B.x,B.y,C.x,C.y); b = getdis(C.x,C.y,A.x,A.y); c = getdis(B.x,B.y,A.x,A.y); //cout << "dis" << ' ' << a << '!' << b << '!' << c << endl; double alpha = lawofcosine(b,c,a); double beta = lawofcosine(a,c,b); double gama = lawofcosine(a,b,c); //cout << "angle" << ' ' << alpha * 180 / pi << '@' << beta * 180 / pi << '@' << gama * 180 / pi<<endl; double theta1 = getangle(A.x,A.y,B.x,B.y);//k(AB)angle double theta2 = getangle(B.x,B.y,C.x,C.y);//k(CB)angle double theta3 = getangle(A.x,A.y,C.x,C.y);//k(AC)angle //cout << "theta" << ' ' << theta1 * 180 / pi << '#' << theta2 * 180 / pi<< '#' << theta3 * 180 / pi<< endl; double k1 = tan(theta2 + beta / 3.0);//k(BD) double k2 = tan(theta3 + gama / 3.0);//k(CE) double k3 = tan(theta3 + 2.0 * gama / 3.0);//k(CD) double k4 = tan(theta1 + 2.0 * alpha / 3.0);//k(AE) //cout << "k" << '$' << k1 * 180 / pi << '$' << k2 * 180 / pi << '$' << k3 * 180 / pi << '$' << k4 * 180 / pi << endl; D.x = (k1 * B.x - k3 * C.x + C.y - B.y) / (k1 - k3); D.y = D.x * k1 - k1 * B.x + B.y; E.x = (k2 * C.x - k4 * A.x + A.y - C.y) / (k2 - k4); E.y = E.x * k2 - k2 * C.x + C.y; double x1, y1, x2, y2; x2 = D.x, y2 = D.y, x1 = E.x, y1 = E.y; double alpha1 = atan2((y1-y2),(x1-x2)); double l = sqrt((y1-y2)*(y1-y2)+(x1-x2)*(x1-x2)); double x3=x2+l*cos(alpha1+pi/3); double y3=y2+l*sin(alpha1+pi/3); F.x = x3, F.y = y3; cout << fixed << setprecision(7) << D.x << ' ' << D.y << ' ' << E.x << ' ' << E.y << ' ' << F.x << ' ' << F.y << endl; } }
变成解析几何就太麻烦了,可是欧氏几何又没有现成的关系