Find发帖水王哥

 

Find发帖水王
传说贴吧有一大“水王”,他不但喜欢发帖,还会回复其他ID发的每个帖子。坊间风闻该“水王”发帖数目超过了帖子总数的一半。如果你有一个当前论坛上所有帖子(包括回帖)的列表,其中帖子作者的ID也在表中,你能快速找出这个传说中的贴吧水王吗?
先来思考一下
这个问题的意思就是从一个有很多ID的列表中找到一个数目超过总数一半的ID。也就是数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字。
最明显的思路是遍历一遍,记下每个数出现的次数。可是对于一个无序的数组你会拙计的,时间复杂度是O(n^2),空间复杂度是O(n)。如果你知道数组中最大的数是K,那可以利用array[k]++,两次遍历就可以求出来啦,时间复杂度是O(n),空间复杂度也是O(n),当然这方法是需要有条件的无序?
那就给他排序啊,用快排排好序,再一次遍历就可以了(只需要以一个MaxTimes和WateringId就可以解决了,自己想一下)。时间复杂度T(n)=O(nlgn)+O(n)=O(nlgn),空间复杂度是O(1)。其实压根就不需要再遍历,因为大于总数一半的ID肯定出现在N/2处,直接求得即可。时间复杂度也是T(n)=O(nlgn),没什么本质的变化。
可不可以不排序呢当然可以,我们可以用Hash表,一次遍历处理,一次遍历求的ID。
时间复杂度是O(n),空间复杂度也是O(n)。时间复杂度减少了,空间复杂度没变化。
可以减少空间复杂度吗ID的数量和一半有关系?这可以用分治策略来解决,把大问题化为若干子问题来解决。我们这样想,水王的ID比所有人的ID数目都多,如果我们删除一个水王的ID和一个其他人的ID,那最后剩余的ID就是水王的ID。当然我们不知道水王的ID是什么,可是只要我们删除的是不同的ID,那最后可能会剩很多ID,那就是水王的ID。基于这种思想,我们可以申请一个变长数组,首先放入第一个,然后从第二个ID开始判断是否和前一个相等,如果相等,那就删除已经存入的那个,否则加入。动态划分内存。时间复杂度是O(n),空间复杂度最好是O(1),最差同样是O(n)。其实呢,没必要非申请动态数组,这其实是一种思想。我们想象这是删除,可是我们并不删除,用一个变量来处理删除的事情,假设删除而已。用times记录ID的次数,用WateringId来记录水王的ID。当我们遍历的时候,如果此时数组中的ID和已经保存的水王ID一样,那times++,否则times--,如果times=0,我们需要保存此时的ID,并把times重新设为1。不同的相消,相同的累积而已。也就是说第一次times=0时记下当前ID作为水王的ID-,继续遍历,如果times=3则表示相等的ID有3个了,需要3个不同的ID才能使times变为0,times=0之后要记录新的ID作为水王哥的ID。遍历一遍足够找到水王的ID。
举个例子0,1,2,1,1,1
i=0,times=0   →    WateringId=0,times=1;
i=1,a[1]=1 != WateringId  →   times-- (times=0);
i=2,times=0  →    WateringId=1,times=1;
i=3,a[3]=2!= WateringId    →   times-- (times=0);
i=4,times=0  →   WateringId=1, times++ (times=1);
i=5,a[5]=1=WateringId  → times++  (times=2);
此时WateringId = 1,YES,Done!
不过不要忘了水王哥只是一个传说,不一定存在。所以最后要遍历一次,看看得出的水王ID的数量是不是大于N/2,是不是真的水王。
编码实现


  int FindWateringId(int Id[],int M)
  {
  	int WateringId;
  	int times=0;
  	if(0==M)    //还要判断输入数目是否有效
  		return false;
  	for(int i=0;i<M;i++)  
  	{
  		if(times==0)
  		{
  			WateringId=Id[i];
  			times=1;
  		}
  		else
  		{
  			if(WateringId==Id[i])
  				times++;
  			else
  				times--;
  		}
  	}
  	times=0;  
      for(i=0;i<M;i++)  //用来检测是否真的存在times>N/2的id
      {  
          if(Id[i]==WateringId)  
              times++;  
      }  
      if(times*2<=M) //ID数量大于N/2的水王不存在
  		IsExisted=0;
  	else
  		IsExisted=1;	
  	return WateringId;
  		
  }

时间复杂度只是O(n),空间复杂度只是O(1)而已。很nice的算法。
可是如果水王发的帖子数目刚好等于帖子总数的一半,那你还可以用上述方法解决吗?肯定行的通,换汤不换药而已,只要略加转变就可以完美解决。排序+统计可以,Hash也可以,删除的思想还行的通吗?对半?那删除完了不是把WateringId给弄没了吗?恩,也不一定啊。
如果水王的帖子数是总数的一半,那么总数必然是偶数,剩余的最后两个ID肯定有一个是水王的,不是全部,是其中一个!只需要最后加以判断即可。只需要稍微添加一些代码。

 

 int FindWateringId(int Id[],int M)
  {
  	int WateringId;
  	int times=0;
  	if(0==M)           //还要判断输入数目是否有效
  		return false;
  	for(int i=0;i<M;i++)   
  	{
  		if(times==0)
  		{
  			WateringId=Id[i];
  			times=1;
  		}
  		else
  		{
  			if(WateringId==Id[i])
  				times++;
  			else
  				times--;
  		}
  	}
  	times=0;
  	int WateringId2=Id[M-1];  //假设最后一个是水王,总数目是偶数
  	for(i=0;i<M;i++)
  	{
  		if(Id[i]==WateringId)
  			times++;
  	}
  	if(times<M/2) 
  		WateringId=WateringId2;  //这才是真的水王
  
  	times=0;  
      for(i=0;i<M;i++)  //用来检测是否真的存在times>N/2的id
      {  
          if(Id[i]==WateringId)  
              times++;  
      }  
      if(times*2<M) //ID数量大于N/2的水王不存在
  		IsExisted=0;
  	else
  		IsExisted=1;	
  	return WateringID;
  }

 

此版本同样适用于大于N/2的水王。
当然还有一种办法是用两个水王变量来解决这个问题。真假水王,最后谁的帖子多,谁就是真的水王,当然数目还要是满足times>=N/2的。这个也当然可以编码实现。
  int FindWateringId(int Id[],int M)
  {
  	int WateringId;
  	int FWateringId;
  	int times=0;
  	int Ftimes=0;
  	if(0==M)           //还要判断输入数目是否有效
  		return false;
  	for(int i=0;i<M;i++)   
  	{
  		if(times==0)
  		{
  			WateringId=Id[i];
  			times=1;
  		}
  		else if(Ftimes==0&&WateringId!=Id[i]) 
  		{				//不能让WateringId和FWateringId相等
  			FWateringId=Id[i];
  			Ftimes=1;
  		}
  		else
  		{
  			if(WateringId==Id[i])
  			{
  				times++;
  			}
  			else if(FWateringId==Id[i])
  			{
  				Ftimes++;
  			}
  			else    //同时减去,这下子 直接少了3个。
  			{
  				times--;
  				Ftimes--;
  			}
  		}
  	}
  	if(Ftimes>times)  
  		WateringId=FWateringId;   //这才是真水王
  	times=0;  
      for(i=0;i<M;i++)  //用来检测是否真的存在times>N的id
      {  
          if(Id[i]==WateringId)  
              times++;  
      }  
      if(times*2<M) //ID数量大于N/2的水王不存在
  		IsExisted=0;
  	else
  		IsExisted=1;	
  	return WateringId;
  		
  }

突然某一天,水王哥不见了,出现了3个发帖量超过总数1/4的水哥,你还能快速的找到他们吗?排序+统计完全可以搞定,无非是多了几个变量而已。类似a个发帖量超过总数1/b的问题都可以这么解决,这就好像一道ACM题了。有时间可以编码试试。
OK,水王问题解决!

 



 

posted @ 2013-07-09 16:19  爱生活,爱编程  阅读(217)  评论(0编辑  收藏  举报