Nginx学习之六-nginx核心进程模型
一、Nginx整体架构
正常执行中的nginx会有多个进程,最基本的有master process(监控进程,也叫做主进程)和woker process(工作进程),还可能有cache相关进程。
一个较为完整的整体框架结构如图所示:
二、核心进程模型
启动nginx的主进程将充当监控进程,而由主进程fork()出来的子进程则充当工作进程。
nginx也可以单进程模型执行,在这种进程模型下,主进程就是工作进程,没有监控进程。
Nginx的核心进程模型框图如下:
master进程
监控进程充当整个进程组与用户的交互接口,同时对进程进行监护。它不需要处理网络事件,不负责业务的执行,只会通过管理worker进程来实现重启服务、平滑升级、更换日志文件、配置文件实时生效等功能。
master进程全貌图(来自阿里集团数据平台博客):
master进程中for(::)无限循环内有一个关键的sigsuspend()函数调用,该函数调用是的master进程的大部分时间都处于挂起状态,直到master进程收到信号为止。
master进程通过检查一下7个标志位来决定ngx_master_process_cycle方法的运行:
sig_atomic_t ngx_reap;
sig_atomic_t ngx_terminate;
sig_atomic_t ngx_quit;
sig_atomic_t ngx_reconfigure;
sig_atomic_t ngx_reopen;
sig_atomic_t ngx_change_binary;
sig_atomic_t ngx_noaccept;
进程中接收到的信号对Nginx框架的意义:
信号 | 对应进程中的全局标志位变量 | 意义 |
QUIT | ngx_quit | 优雅地关闭整个服务 |
TERM或INT | ngx_terminate | 强制关闭整个服务 |
USR1 | ngx_reopen | 重新打开服务中的所有文件 |
WINCH | ngx_noaccept | 所有子进程不再接受处理新的连接,实际相当于对所有子进程发送QUIT信号 |
USR2 | ngx_change_binary | 平滑升级到新版本的Nginx程序 |
HUP | ng_reconfigure | 重读配置文件 |
CHLD | ngx_reap | 有子进程以外结束,需要监控所有子进程 |
还有一个标志位会用到:ngx_restart,它仅仅是在master工作流程中作为标志位使用,与信号无关。
核心代码(ngx_process_cycle.c):
void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; //信号处理设置工作 sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } ngx_setproctitle(title); ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); //其中包含了fork产生子进程的内容 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); //Cache管理进程与cache加载进程的主流程 ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) {//循环 if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); sigsuspend(&set);//master进程休眠,等待接受信号被激活 ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); //标志位为1表示需要监控所有子进程 if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle);//管理子进程 } //当live标志位为0(表示所有子进程已经退出)、ngx_terminate标志位为1或者ngx_quit标志位为1表示要退出master进程 if (!live && (ngx_terminate || ngx_quit)) { ngx_master_process_exit(cycle);//退出master进程 } //ngx_terminate标志位为1,强制关闭服务,发送TERM信号到所有子进程 if (ngx_terminate) { if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { ngx_signal_worker_processes(cycle, SIGKILL); } else { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } //ngx_quit标志位为1,优雅的关闭服务 if (ngx_quit) { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));//向所有子进程发送quit信号 ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) {//关闭监听端口 if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } //ngx_reconfigure标志位为1,重新读取配置文件 //nginx不会让原来的worker子进程再重新读取配置文件,其策略是重新初始化ngx_cycle_t结构体,用它来读取新的额配置文件 //再创建新的额worker子进程,销毁旧的worker子进程 if (ngx_reconfigure) { ngx_reconfigure = 0; //ngx_new_binary标志位为1,平滑升级Nginx if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); //初始化ngx_cycle_t结构体 cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); //创建新的worker子进程 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); /* allow new processes to start */ ngx_msleep(100); live = 1; //向所有子进程发送QUIT信号 ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } //ngx_restart标志位在ngx_noaccepting(表示正在停止接受新的连接)为1的时候被设置为1. //重启子进程 if (ngx_restart) { ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } //ngx_reopen标志位为1,重新打开所有文件 if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } //平滑升级Nginx if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } //ngx_noaccept为1,表示所有子进程不再处理新的连接 if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }
ngx_start_worker_processes函数:
static void ngx_start_worker_processes(ngx_cycle_t *cycle, ngx_int_t n, ngx_int_t type) { ngx_int_t i; ngx_channel_t ch; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start worker processes"); ch.command = NGX_CMD_OPEN_CHANNEL; //循环创建n个worker子进程 for (i = 0; i < n; i++) { //完成fok新进程的具体工作 ngx_spawn_process(cycle, ngx_worker_process_cycle, (void *) (intptr_t) i, "worker process", type); //全局数组ngx_processes就是用来存储每个子进程的相关信息,如:pid,channel,进程做具体事情的接口指针等等,这些信息就是用结构体ngx_process_t来描述的。 ch.pid = ngx_processes[ngx_process_slot].pid; ch.slot = ngx_process_slot; ch.fd = ngx_processes[ngx_process_slot].channel[0]; /*在ngx_spawn_process创建好一个worker进程返回后,master进程就将worker进程的pid、worker进程在ngx_processes数组中的位置及channel[0]传递给前面已经创建好的worker进程,然后继续循环开始创建下一个worker进程。刚提到一个channel[0],这里简单说明一下:channel就是一个能够存储2个整型元素的数组而已,这个channel数组就是用于socketpair函数创建一个进程间通道之用的。master和worker进程以及worker进程之间都可以通过这样的一个通道进行通信,这个通道就是在ngx_spawn_process函数中fork之前调用socketpair创建的。*/ ngx_pass_open_channel(cycle, &ch); } }
ngx_spawn_process函数:
//参数解释: //cycle:nginx框架所围绕的核心结构体 //proc:子进程中将要执行的工作循环 //data:参数 //name:子进程名字 ngx_pid_t ngx_spawn_process(ngx_cycle_t *cycle, ngx_spawn_proc_pt proc, void *data, char *name, ngx_int_t respawn) { u_long on; ngx_pid_t pid; ngx_int_t s; if (respawn >= 0) { s = respawn; } else { for (s = 0; s < ngx_last_process; s++) { if (ngx_processes[s].pid == -1) { break; } } if (s == NGX_MAX_PROCESSES) { ngx_log_error(NGX_LOG_ALERT, cycle->log, 0, "no more than %d processes can be spawned", NGX_MAX_PROCESSES); return NGX_INVALID_PID; } } if (respawn != NGX_PROCESS_DETACHED) { /* Solaris 9 still has no AF_LOCAL */ //创建父子进程间通信的套接字对(基于TCP) if (socketpair(AF_UNIX, SOCK_STREAM, 0, ngx_processes[s].channel) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "socketpair() failed while spawning \"%s\"", name); return NGX_INVALID_PID; } ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0, "channel %d:%d", ngx_processes[s].channel[0], ngx_processes[s].channel[1]); //设置为非阻塞模式 if (ngx_nonblocking(ngx_processes[s].channel[0]) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, ngx_nonblocking_n " failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (ngx_nonblocking(ngx_processes[s].channel[1]) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, ngx_nonblocking_n " failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } on = 1; if (ioctl(ngx_processes[s].channel[0], FIOASYNC, &on) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "ioctl(FIOASYNC) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (fcntl(ngx_processes[s].channel[0], F_SETOWN, ngx_pid) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fcntl(F_SETOWN) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (fcntl(ngx_processes[s].channel[0], F_SETFD, FD_CLOEXEC) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fcntl(FD_CLOEXEC) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (fcntl(ngx_processes[s].channel[1], F_SETFD, FD_CLOEXEC) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fcntl(FD_CLOEXEC) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } ngx_channel = ngx_processes[s].channel[1]; } else { ngx_processes[s].channel[0] = -1; ngx_processes[s].channel[1] = -1; } ngx_process_slot = s; //创建子进程 pid = fork(); switch (pid) { case -1: ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fork() failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; case 0: ngx_pid = ngx_getpid(); proc(cycle, data); break; default: break; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start %s %P", name, pid); ngx_processes[s].pid = pid; ngx_processes[s].exited = 0; if (respawn >= 0) { return pid; } ngx_processes[s].proc = proc; ngx_processes[s].data = data; ngx_processes[s].name = name; ngx_processes[s].exiting = 0; switch (respawn) { case NGX_PROCESS_NORESPAWN: ngx_processes[s].respawn = 0; ngx_processes[s].just_spawn = 0; ngx_processes[s].detached = 0; break; case NGX_PROCESS_JUST_SPAWN: ngx_processes[s].respawn = 0; ngx_processes[s].just_spawn = 1; ngx_processes[s].detached = 0; break; case NGX_PROCESS_RESPAWN: ngx_processes[s].respawn = 1; ngx_processes[s].just_spawn = 0; ngx_processes[s].detached = 0; break; case NGX_PROCESS_JUST_RESPAWN: ngx_processes[s].respawn = 1; ngx_processes[s].just_spawn = 1; ngx_processes[s].detached = 0; break; case NGX_PROCESS_DETACHED: ngx_processes[s].respawn = 0; ngx_processes[s].just_spawn = 0; ngx_processes[s].detached = 1; break; } if (s == ngx_last_process) { ngx_last_process++; } return pid; }
worker进程
worker进程的主要任务是完成具体的任务逻辑。其主要关注点是与客户端或后端真实服务器(此时nginx作为中间代理)之间的数据可读/可写等I/O交互事件,所以工作进程的阻塞点是在像select()、epoll_wait()等这样的I/O多路复用函数调用处,以等待发生数据可读/写事件。当然也可能被新收到的进程信号中断。
master进程如何通通知worker进程去做某些工作呢?采用的是信号。
当收到信号时,信号处理函数ngx_signal_handler()就会执行。
对于worker进程的工作方法ngx_worker_process_cycle来说,它主要关注4个全局标志位:
sig_atomic_t ngx_terminate;//强制关闭进程
sig_atomic_t ngx_quit;//优雅地关闭进程(有唯一一段代码会设置它,就是接受到QUIT信号。ngx_quit只有在首次设置为1,时,才会将ngx_exiting置为1)
ngx_uint_t ngx_exiting;//退出进程标志位
sig_atomic_t ngx_reopen;//重新打开所有文件
其中ngx_terminate、ngx_quit 、ngx_reopen都将由ngx_signal_handler根据接受到的信号来设置。ngx_exiting标志位仅由ngx_worker_cycle方法在退出时作为标志位使用。
核心代码(ngx_process_cycle.c):
static void ngx_worker_process_cycle(ngx_cycle_t *cycle, void *data) { ngx_int_t worker = (intptr_t) data; ngx_uint_t i; ngx_connection_t *c; ngx_process = NGX_PROCESS_WORKER; //子进程初始化 ngx_worker_process_init(cycle, worker); ngx_setproctitle("worker process"); //这里有一段多线程条件下的代码。由于nginx并不支持多线程,因此删除掉了 //循环 for ( ;; ) { //ngx_exiting标志位为1,进程退出 if (ngx_exiting) { c = cycle->connections; for (i = 0; i < cycle->connection_n; i++) { if (c[i].fd != -1 && c[i].idle) { c[i].close = 1; c[i].read->handler(c[i].read); } } if (ngx_event_timer_rbtree.root == ngx_event_timer_rbtree.sentinel) { ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting"); ngx_worker_process_exit(cycle); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle"); ngx_process_events_and_timers(cycle);//处理事件的方法 //强制结束进程 if (ngx_terminate) { ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting"); ngx_worker_process_exit(cycle); } //优雅地退出进程 if (ngx_quit) { ngx_quit = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "gracefully shutting down"); ngx_setproctitle("worker process is shutting down"); if (!ngx_exiting) { ngx_close_listening_sockets(cycle); //设置ngx_exiting 标志位 ngx_exiting = 1; } } //重新打开所有文件 if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, -1); } } }
参考资料:
《深入理解Nginx》-陶辉