Android中Linux suspend/resume流程
Android中Linux suspend/resume流程
首先我们从linux kernel 的suspend说起,不管你是使用echo mem > /sys/power/state 或者使用你的开发板已经拥有的power key 都可以实现系统进入suspend的功能,这是suspend的基础,即控制系统使suspend得到执行的机会,这里相信大家都可以理解,不再过多说明。
那么suspend得到了执行的机会又是怎么一步一步开始往下执行的呢?现在就开始我们的系统的电源管理之旅:
我们就通过echo mem > /sys/power/state这种方式来看,这样更容易被理解,位于/sys/power下面的这个state,做driver不知道那可说不过去,我们就看看这个state是在哪个地方创建的吧
kernel/kernel/power/suspend.c
static int __init pm_init(void) { int error = pm_start_workqueue(); if (error) return error; hibernate_image_size_init(); hibernate_reserved_size_init(); power_kobj = kobject_create_and_add("power", NULL); if (!power_kobj) return -ENOMEM; return sysfs_create_group(power_kobj, &attr_group); } core_initcall(pm_init);
这段代码很少却很重要,我关心的是他确实为我们在sys目录下先建了一个power目录,然后,return时创建了很多接口,其中一个就是state,以下是接口定义
static struct attribute * g[] = { &state_attr.attr, #ifdef CONFIG_PM_TRACE &pm_trace_attr.attr, &pm_trace_dev_match_attr.attr, #endif #ifdef CONFIG_PM_SLEEP &pm_async_attr.attr, &wakeup_count_attr.attr, #ifdef CONFIG_PM_DEBUG &pm_test_attr.attr, #endif #ifdef CONFIG_USER_WAKELOCK &wake_lock_attr.attr, &wake_unlock_attr.attr, #endif #endif NULL, }; static struct attribute_group attr_group = { .attrs = g, };
上面你可以看到了这些接口了
我们在echo mem > /sys/power/state,或调用的我们的接口函数state_store,suspend也就才真正开始走出第一步
static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { #ifdef CONFIG_SUSPEND #ifdef CONFIG_EARLYSUSPEND suspend_state_t state = PM_SUSPEND_ON; #else suspend_state_t state = PM_SUSPEND_STANDBY; #endif const char * const *s; #endif char *p; int len; int error = -EINVAL; p = memchr(buf, '\n', n); len = p ? p - buf : n; /* First, check if we are requested to hibernate */ if (len == 4 && !strncmp(buf, "disk", len)) { error = hibernate(); goto Exit; } #ifdef CONFIG_SUSPEND for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) { if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) break; } if (state < PM_SUSPEND_MAX && *s) #ifdef CONFIG_EARLYSUSPEND if (state == PM_SUSPEND_ON || valid_state(state)) { error = 0; request_suspend_state(state); } #else error = enter_state(state); #endif #endif Exit: return error ? error : n; }
这里我们echo mem > /sys/power/state, 还有一种echo on > /sys/power/state,接着state_store进入reauest_suspend_state(state),然后如果是on的话进入late_resume_work(在执行late_resume_work之前会向系统申请main_wake_lock),如果是mem进入early_suspend_work。
reauest_suspend_state函数路径:kernel/kernel/power/earlysuspend.c
void request_suspend_state(suspend_state_t new_state) { unsigned long irqflags; int old_sleep; spin_lock_irqsave(&state_lock, irqflags); old_sleep = state & SUSPEND_REQUESTED; if (debug_mask & DEBUG_USER_STATE) { struct timespec ts; struct rtc_time tm; getnstimeofday(&ts); rtc_time_to_tm(ts.tv_sec, &tm); pr_info("request_suspend_state: %s (%d->%d) at %lld " "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)\n", new_state != PM_SUSPEND_ON ? "sleep" : "wakeup", requested_suspend_state, new_state, ktime_to_ns(ktime_get()), tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec); } if (!old_sleep && new_state != PM_SUSPEND_ON) { state |= SUSPEND_REQUESTED; queue_work(suspend_work_queue, &early_suspend_work); } else if (old_sleep && new_state == PM_SUSPEND_ON) { state &= ~SUSPEND_REQUESTED; wake_lock(&main_wake_lock); queue_work(suspend_work_queue, &late_resume_work); } requested_suspend_state = new_state; spin_unlock_irqrestore(&state_lock, irqflags); }
这里做的最重要的是就在最下面那两个分支中,决定了我们执行early_suspend_work,还是late_resume_work。这里我们走early_suspend_work这个分支接着往下看。先看看early_suspend_work怎么被调用
queue_work(suspend_work_queue, &early_suspend_work);
这是一个工作队列的调用方法,找到early_suspend_work的定义
static DECLARE_WORK(early_suspend_work, early_suspend);
这里有关于工作队列的方法,不知道就要自己去看看了,所以这里最终调用的其实是early_suspend这个方法
static void early_suspend(struct work_struct *work) { struct early_suspend *pos; unsigned long irqflags; int abort = 0; mutex_lock(&early_suspend_lock); spin_lock_irqsave(&state_lock, irqflags); if (state == SUSPEND_REQUESTED) state |= SUSPENDED; else abort = 1; spin_unlock_irqrestore(&state_lock, irqflags); if (abort) { if (debug_mask & DEBUG_SUSPEND) pr_info("early_suspend: abort, state %d\n", state); mutex_unlock(&early_suspend_lock); goto abort; } if (debug_mask & DEBUG_SUSPEND) pr_info("early_suspend: call handlers\n"); list_for_each_entry(pos, &early_suspend_handlers, link) { if (pos->suspend != NULL) { if (debug_mask & DEBUG_VERBOSE) pr_info("early_suspend: calling %pf\n", pos->suspend); pos->suspend(pos); } } mutex_unlock(&early_suspend_lock); if (debug_mask & DEBUG_SUSPEND) pr_info("early_suspend: sync\n"); sys_sync(); abort: spin_lock_irqsave(&state_lock, irqflags); if (state == SUSPEND_REQUESTED_AND_SUSPENDED) wake_unlock(&main_wake_lock); spin_unlock_irqrestore(&state_lock, irqflags); }
early_suspend()这个函数里会遍历early_suspend_handlers,依次执行里面的early_suspend函数,执行完所有的early_suspend后,释放main_wake_lock,进入wake_unlock函数。
wake_unlock(&main_wake_lock);
这里还是说一下吧,这个main_wake_lock是个什么东西,路径:kernel/kernel/power/wakelock.c
struct wake_lock main_wake_lock;
看他的初始化
wake_lock_init(&main_wake_lock, WAKE_LOCK_SUSPEND, "main");
wake_lock(&main_wake_lock);
首先初始化,然后lock,等待unlock
对于一个lock进入wake_unlock,首先会将lock从原链表中删除(active_wake_locks),然后加入inactive_locks链表中。
void wake_unlock(struct wake_lock *lock) { int type; unsigned long irqflags; spin_lock_irqsave(&list_lock, irqflags); type = lock->flags & WAKE_LOCK_TYPE_MASK; #ifdef CONFIG_WAKELOCK_STAT wake_unlock_stat_locked(lock, 0); #endif if (debug_mask & DEBUG_WAKE_LOCK) pr_info("wake_unlock: %s\n", lock->name); lock->flags &= ~(WAKE_LOCK_ACTIVE | WAKE_LOCK_AUTO_EXPIRE); list_del(&lock->link); list_add(&lock->link, &inactive_locks); if (type == WAKE_LOCK_SUSPEND) { long has_lock = has_wake_lock_locked(type); if (has_lock > 0) { if (debug_mask & DEBUG_EXPIRE) pr_info("wake_unlock: %s, start expire timer, " "%ld\n", lock->name, has_lock); mod_timer(&expire_timer, jiffies + has_lock); } else { if (del_timer(&expire_timer)) if (debug_mask & DEBUG_EXPIRE) pr_info("wake_unlock: %s, stop expire " "timer\n", lock->name); if (has_lock == 0) queue_work(suspend_work_queue, &suspend_work); } if (lock == &main_wake_lock) { if (debug_mask & DEBUG_SUSPEND) print_active_locks(WAKE_LOCK_SUSPEND); #ifdef CONFIG_WAKELOCK_STAT update_sleep_wait_stats_locked(0); #endif } } spin_unlock_irqrestore(&list_lock, irqflags); }
对于释放锁,上面两个过程就结束了,但是如果这个锁的类型是WAKE_LOCK_SUSPEND,那么还需要执行一些操作,判断是否可以进入睡眠。首先调has_wake_lock_locked(type)去查找是否还有这种类型的锁,会遍历active_wake_locks[type]链表,如果在这个链表中一检测中有锁,而且该锁不是超时锁,那么就返回-1。如果是超时锁,且已经超时了,那就去释放这个锁,如果没超时就得到一个max_timeout,然后返回max_timeout。接着就会回到wake_unlock函数中,调用mod_timer(&expire_timer,jiffies +has_lock);has_lock就是前面返回的max_timeout,这句话的意思就是向系统中再添加定时器,定时时间就是最大的超时时间.expire_timer的操作函数是expire_wake_locks,这里会去检测还有没有锁,没有的话就进入suspend_work,执行suspend,进入睡眠流程。上面wake_unlock中如果没有检测到锁,也会执行suspend。在suspend函数中又会通过has_wake_lock去检测有没有锁,有锁就直接返回。
queue_work(suspend_work_queue, &suspend_work);
又是一个工作队列,看看他的定义,找到他的处理过程
static DECLARE_WORK(suspend_work, suspend);
所以他真正执行的是suspend这个方法
static void suspend(struct work_struct *work) { int ret; int entry_event_num; struct timespec ts_entry, ts_exit; if (has_wake_lock(WAKE_LOCK_SUSPEND)) { if (debug_mask & DEBUG_SUSPEND) pr_info("suspend: abort suspend\n"); return; } entry_event_num = current_event_num; sys_sync(); if (debug_mask & DEBUG_SUSPEND) pr_info("suspend: enter suspend\n"); getnstimeofday(&ts_entry); ret = pm_suspend(requested_suspend_state); getnstimeofday(&ts_exit); if (debug_mask & DEBUG_EXIT_SUSPEND) { struct rtc_time tm; rtc_time_to_tm(ts_exit.tv_sec, &tm); pr_info("suspend: exit suspend, ret = %d " "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)\n", ret, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ts_exit.tv_nsec); } if (ts_exit.tv_sec - ts_entry.tv_sec <= 1) { ++suspend_short_count; if (suspend_short_count == SUSPEND_BACKOFF_THRESHOLD) { suspend_backoff(); suspend_short_count = 0; } } else { suspend_short_count = 0; } if (current_event_num == entry_event_num) { if (debug_mask & DEBUG_SUSPEND) pr_info("suspend: pm_suspend returned with no event\n"); wake_lock_timeout(&unknown_wakeup, HZ / 2); } }
suspend函数中,通过pm_suspend(requested_suspend_state)进入suspend操作。这个里面也有唤醒操作,只有等唤醒后才会跳出pm_suspend,跳出后会打印log:suspend:exit suspend, ret =pm_suspend就是判断传入的state是否符合suspend,符合就调用enter_state(state),到现在开始才进入了linux标准的suspend流程。
pm_suspend的路径:kernel/kernel/power/suspend.c
int pm_suspend(suspend_state_t state) { if (state > PM_SUSPEND_ON && state < PM_SUSPEND_MAX) return enter_state(state); return -EINVAL; } EXPORT_SYMBOL(pm_suspend);
enter_state这个函数主要有三个函数调用,分别是suspend_prepare,suspend_devices_and_enter,suspend_finish。
/** * enter_state - Do common work of entering low-power state. * @state: pm_state structure for state we're entering. * * Make sure we're the only ones trying to enter a sleep state. Fail * if someone has beat us to it, since we don't want anything weird to * happen when we wake up. * Then, do the setup for suspend, enter the state, and cleaup (after * we've woken up). */ int enter_state(suspend_state_t state) { int error; if (!valid_state(state)) return -ENODEV; if (!mutex_trylock(&pm_mutex)) return -EBUSY; printk(KERN_INFO "PM: Syncing filesystems ... "); sys_sync(); printk("done.\n"); pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]); error = suspend_prepare(); if (error) goto Unlock; if (suspend_test(TEST_FREEZER)) goto Finish; pr_debug("PM: Entering %s sleep\n", pm_states[state]); pm_restrict_gfp_mask(); error = suspend_devices_and_enter(state); pm_restore_gfp_mask(); Finish: pr_debug("PM: Finishing wakeup.\n"); suspend_finish(); Unlock: mutex_unlock(&pm_mutex); return error; }
suspend_prepare做一些睡眠的准备工作
suspend_devices_and_enter就是真正的设备进入睡眠
suspend_finish唤醒后进行的操作。
下面来一个一个分析:
suspend_prepare中首先通过pm_prepare_console,给suspend分配一个虚拟终端来输出信息;接着通过pm_notifier_call_chain来广播一个系统进入suspend的通报;关闭用户态的helper进程;最后通过suspend_freeze_processes来冻结用户态进程,最后会尝试释放一些内存。在suspend_freeze_processes()函数中调用了freeze_processes()函数,而freeze_processes()函数中又调用了try_to_freeze_tasks()来完成冻结任务。在冻结过程中,会判断当前进程是否有wake_lock,若有,则冻结失败,函数会放弃冻结。
执行完上面的操作后再次回到enter_state函数中,下面开始调用suspend_devices_and_enter()函数让外设进入休眠。在suspend_devices_and_enter()中首先调用关于平台的suspend_ops->begin,接着通过suspend_console来关闭console,也可以通过改变一个flag来使这个函数无效。接着调用dpm_suspend_start。dpm_suspend_start中会执行device_prepare和device_suspend,这两个函数都是调用pm接口里的prepare和suspend函数(其实这里就开始通过总线的接口来执行驱动的suspend函数了,通过bus->pm->suspend)。接着回到suspend_devices_and_enter中调用suspend_enter(state);在suspend_enter中,首先调用平台相关的suspend_ops->prepare,接着执行dpm_suspend_noirq()调用pm接口里的pm->suspend_noirq,回到suspend_enter,接着调用suspend_ops->prepare_late,接下来多cpu中非启动的cpu通过函数disable_nonboot_cpus()被关闭,然后通过调用arch_suspend_disable_irqs()关闭本地中断。再后来才到睡眠设备的操作,sysdev_suspend(PMSG_SUSPEND),这样就会进入sysdev_driver.suspend阶段。最后调用suspend_ops->enter(),这里就开始执行到睡眠的最后一步了,执行平台相关的睡眠。在平台睡眠的代码中主要是通过suspend_in_iram(suspend_param1)来执行一段汇编代码,最终在汇编中睡死。唤醒的步骤与睡眠的步骤相反,cpu有电后会首先从汇编中起来,接着回到suspend_enter函数中,执行suspend_ops->enter()返回后的一些唤醒代码,这边就不再去说了,基本是按照上面的逆序来操作的。
上面的过程在我看来还是很复杂的,power management 要好好研究一下了
resume的过程
唤醒的时候,程序从suspend_devices_and_enter函数中出来后,开始执行suspend_finish,接着就会从enter_state中退出来,返回pm_suspend,然后又从pm_suspend返回到wakelock.c中的suspend(),在这里接下来就会打印出”suspend:exit suspend, ret“这些log。
下面是网上大牛画的一张睡眠唤醒的流程图,总结的很是到位,非常感谢,分享链接:http://blog.csdn.net/android_huber/article/details/7399476