给定正整数b,求最大的整数a,满足a*(a+b) 为完全平方数
题意:给定正整数b,求最大的整数a,满足a*(a+b) 为完全平方数,1 <= b <= 10^9
解题思路:
我们设a,b的最大公约数为g,则a与a+b的最大公约数也为g,因为最大公约数有性质:gcd(a,b)=gcd(a,a+b)
这样我们就可以进一步化简有a*(a+b)=g^2*a1*(a1+b1),其中a1与b1就一定互素了,因为已经约去最大公约数g了,所以得到a1与a1+b1也互素。
由于要为完全平方数,所以可以设x^2=a1,y^2=a1+b1 进而推出:b1=y^2-x^2=(y-x)*(y+x)
现在我们令n=y+x,m=y-x 很明显n>m,由于a1与a1+b1互素,所以有gcd(x^2,y^2)=1,进而有gcd(x,y)=1
到了这里本题就可以这样做了:
先求出b的所有约数,这样g就等于b/b的约数,然后又分别求出b的约数的约数,假设为arr2[j],由于n>m,我们只需要枚举到sqrt(arr1[i])即可,然后解
出x=(n-m)/2,y=(n+m)/2,但是前提是要保证都能整除,然后再判断gcd(x,y)=1,两层for循环,记录最大值即可。至于怎样求一个数因子,前面的文章已
经给出,就是素因子分解加上dfs,由于因子一般不会很多,所以一般没有问题。建议不要看我的代码,很乱的。
#include <iostream> #include <string.h> #include <algorithm> #include <stdio.h> using namespace std; typedef long long LL; const int N=1000010; const int M=1050; bool prime[N]; LL p[N]; LL pr1[M]; LL kk1[M]; LL pr2[M]; LL kk2[M]; LL k=0; LL c1,r1; LL arr1[M]; LL c2,r2; LL arr2[M]; void isprime() { LL i,j; memset(prime,true,sizeof(prime)); for(i=2;i<N;i++) { if(prime[i]) { p[k++]=i; for(j=i+i;j<N;j+=i) { prime[j]=false; } } } } void CalFactor1(LL n) { LL t=n,i,a;c1=0; for(i=0;p[i]*p[i]<=n;i++) { a=0; if(n%p[i]==0) { pr1[c1]=p[i]; while(n%p[i]==0) { a++; n/=p[i]; } kk1[c1]=a; c1++; } } if(n>1) { pr1[c1]=n; kk1[c1]=1; c1++; } } void dfs1(LL dep, LL product) { if ( dep == c1 ) { arr1[r1++]=product; return; } for ( LL i = 0; i <= kk1[dep]; ++i ) { dfs1(dep + 1, product); product *= pr1[dep]; } } void CalFactor2(LL n) { LL t=n,i,a;c2=0; for(i=0;p[i]*p[i]<=n;i++) { a=0; if(n%p[i]==0) { pr2[c2]=p[i]; while(n%p[i]==0) { a++; n/=p[i]; } kk2[c2]=a; c2++; } } if(n>1) { pr2[c2]=n; kk2[c2]=1; c2++; } } void dfs2(LL dep, LL product) { if ( dep == c2 ) { arr2[r2++]=product; return; } for ( LL i = 0; i <= kk2[dep]; ++i ) { dfs2(dep + 1, product); product *= pr2[dep]; } } LL gcd(LL a,LL b) { return b? gcd(b,a%b):a; } int main() { LL m,n,i,j,g,b,val,t; isprime(); cin>>t; while(t--) { cin>>b; r1=r2=0; CalFactor1(b); dfs1(0,1); sort(arr1,arr1+r1); LL max=0; for(i=0;i<r1;i++) { r2=0; g=b/arr1[i]; memset(arr2,0,sizeof(arr2)); CalFactor2(arr1[i]); dfs2(0,1); for(j=0;j<r2;j++) { if(arr2[j]*arr2[j]<arr1[i]) { n=arr1[i]/arr2[j]; m=arr2[j]; if((n-m)%2==0&&(n+m)%2==0&&gcd((n+m)/2,(n-m)/2)==1) { val=g*((n-m)/2)*((n-m)/2); if(val>max) max=val; } } } } cout<<max<<endl; } return 0; }