Hystrix解析(二)
Hystrix的核心原理
针对类级别的配置(自定义)
- 可配置化的降级策略:
- 信号量/线程 / 超时(1s)、熔断(错误率)
- HystrixCommandProperty
- 可以识别的降级边界:
- @HystrixCommand(Spring AOP)
- HystrixCommand 抽象类
- 数据采集:
- 如何触发熔断(10s / 20个请求 /错误率)-> 如何采集数据,如何统计数据.
- SEMAPHORE,最大并发数量 -> AQS ->tryAcquire(), acquire()
- 行为干预: 触发降级/熔断之后,对正常业务产生影响
- 结果干预: fallback()
- 自动恢复(处于熔断状态下,会每隔5s尝试去恢复)
Hystrix的熔断的原理以及请求代理的原理
Hystrix的数据统计是采用的滑动窗口
滑动窗口: 流量控制技术
请求的代理AOP
RxJava
- Obervable 被观察者
- Observer 观察者
- Subscribe 订阅
返回Observable中的call会被执行。
- 如果有缓存: toCache.toObservable(); -> toBlocking() -> (Observable().call())
Hystrix熔断的源码分析
Hystrix熔断的@HystrixCommand注解,是通过HystrixCommandAspect这个切面来处理的。
其中我们关注@Around注解声明的方法,它针对于请求合并,以及降级的注解进行代理。这里重点针对HystrixCommand这个注解进行详细分析。
- getMethodFromTarget 获取目标方法信息
- MetaHolder metaHolder = metaHolderFactory.create(joinPoint); 获取元数据,比如调用方法,HystrixProperty注解数据、方法参数等
- HystrixCommandFactory.getInstance().create 获取调用者,它持有一个命令对象,并且可以在合适的时候通过这个命令对象完成具体的业务逻辑
- execute,执行命令
@Around("hystrixCommandAnnotationPointcut() || hystrixCollapserAnnotationPointcut()")
public Object methodsAnnotatedWithHystrixCommand(final ProceedingJoinPoint joinPoint) throws Throwable {
Method method = getMethodFromTarget(joinPoint);
//...
MetaHolderFactory metaHolderFactory = META_HOLDER_FACTORY_MAP.get(HystrixPointcutType.of(method));
MetaHolder metaHolder = metaHolderFactory.create(joinPoint);
//如果是异步,则创建GenericObservableCommand, 否则,则创建GenericCommand
HystrixInvokable invokable = HystrixCommandFactory.getInstance().create(metaHolder);
ExecutionType executionType = metaHolder.isCollapserAnnotationPresent() ?
metaHolder.getCollapserExecutionType() : metaHolder.getExecutionType();
Object result;
try {
if (!metaHolder.isObservable()) {
//是否是响应式的(由于我们这些都是同步的会走这个逻辑)
result = CommandExecutor.execute(invokable, executionType, metaHolder);
} else {
result = executeObservable(invokable, executionType, metaHolder);
}
} catch (HystrixBadRequestException e) {
throw e.getCause();
} catch (HystrixRuntimeException e) {
throw hystrixRuntimeExceptionToThrowable(metaHolder, e);
}
return result;
}
CommandExecutor.execute
这个方法主要用来执行命令,从代码中可以看出这里有三个执行类型,分别是同步、异步、以及响应式。其中,响应式又分为Cold Observable(observable.toObservable()) 和 Hot Observable(observable.observe())
默认的executionType=SYNCHRONOUS ,同步请求。
- execute():同步执行,返回一个单一的对象结果,发生错误时抛出异常。
- queue():异步执行,返回一个 Future 对象,包含着执行结束后返回的单一结果。
- observe():这个方法返回一个 Observable 对象,它代表操作的多个结果,但是已经被订阅者消费掉了。
- toObservable():这个方法返回一个 Observable 对象,它代表操作的多个结果,需要咱们自己手动订阅并消费掉。
需要注意的是,Hystrix用到了RxJava这个框架,它是一个响应式编程框架,在Android里面用得比较多。
public static Object execute(HystrixInvokable invokable, ExecutionType executionType, MetaHolder metaHolder) throws RuntimeException {
Validate.notNull(invokable);
Validate.notNull(metaHolder);
switch (executionType) {
// 同步
case SYNCHRONOUS: {
return castToExecutable(invokable, executionType).execute();
}
// 异步
case ASYNCHRONOUS: {
HystrixExecutable executable = castToExecutable(invokable, executionType);
if (metaHolder.hasFallbackMethodCommand()
&& ExecutionType.ASYNCHRONOUS == metaHolder.getFallbackExecutionType()) {
return new FutureDecorator(executable.queue());
}
return executable.queue();
}
// 响应式
case OBSERVABLE: {
HystrixObservable observable = castToObservable(invokable);
return ObservableExecutionMode.EAGER == metaHolder.getObservableExecutionMode() ? observable.observe() : observable.toObservable();
}
default:
throw new RuntimeException("unsupported execution type: " + executionType);
}
}
HystrixCommand.execute()
接着调用HystrixCommand.execute()方法,这个方法中,首先调用queue(),这个方法会返回一个future对象。
public R execute() {
try {
return queue().get();
} catch (Exception e) {
throw Exceptions.sneakyThrow(decomposeException(e));
}
}
queue这个方法中,返回了一个Future对象,这个future对象的实现是f,f是以匿名内部类,它是Java.util.concurrent中定一个的一个异步带返回值对象。当调用queue().get()方法时,最终是委派给了delegate.get 方法。
public Future<R> queue() {
/*
* The Future returned by Observable.toBlocking().toFuture() does not implement the
* interruption of the execution thread when the "mayInterrupt" flag of Future.cancel(boolean) is set to true;
* thus, to comply with the contract of Future, we must wrap around it.
*/
// 创建一个委派对象
final Future<R> delegate = toObservable().toBlocking().toFuture();
final Future<R> f = new Future<R>() {
@Override
public boolean cancel(boolean mayInterruptIfRunning) {
if (delegate.isCancelled()) {
return false;
}
if (HystrixCommand.this.getProperties().executionIsolationThreadInterruptOnFutureCancel().get()) {
/*
* The only valid transition here is false -> true. If there are two futures, say f1 and f2, created by this command
* (which is super-weird, but has never been prohibited), and calls to f1.cancel(true) and to f2.cancel(false) are
* issued by different threads, it's unclear about what value would be used by the time mayInterruptOnCancel is checked.
* The most consistent way to deal with this scenario is to say that if *any* cancellation is invoked with interruption,
* than that interruption request cannot be taken back.
*/
interruptOnFutureCancel.compareAndSet(false, mayInterruptIfRunning);
}
final boolean res = delegate.cancel(interruptOnFutureCancel.get());
if (!isExecutionComplete() && interruptOnFutureCancel.get()) {
final Thread t = executionThread.get();
if (t != null && !t.equals(Thread.currentThread())) {
t.interrupt();
}
}
return res;
}
@Override
public boolean isCancelled() {
return delegate.isCancelled();
}
@Override
public boolean isDone() {
return delegate.isDone();
}
@Override
public R get() throws InterruptedException, ExecutionException {
return delegate.get();
}
@Override
public R get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
return delegate.get(timeout, unit);
}
};
/* special handling of error states that throw immediately */
if (f.isDone()) {
try {
f.get();
return f;
} catch (Exception e) {
Throwable t = decomposeException(e);
if (t instanceof HystrixBadRequestException) {
return f;
} else if (t instanceof HystrixRuntimeException) {
HystrixRuntimeException hre = (HystrixRuntimeException) t;
switch (hre.getFailureType()) {
case COMMAND_EXCEPTION:
case TIMEOUT:
// we don't throw these types from queue() only from queue().get() as they are execution errors
return f;
default:
// these are errors we throw from queue() as they as rejection type errors
throw hre;
}
} else {
throw Exceptions.sneakyThrow(t);
}
}
}
return f;
}
toObservable()
在RxJava中,分为几种角色
- Observable(被观察者),它的主要作用是产生事件
- Observer(观察者),它的作用是接收事件并作出相应
- Subscribe(订阅),它用来连接被观察者和观察者
- Event(事件),被观察者、观察者、沟通的载体
在queue中,调用toObservable()方法创建一个被观察者
AbstractCommand.toObservable
通过Observable定义一个被观察者,这个被观察者会被toObservable().toBlocking().toFuture() ,实际上就是返回可获得 run() 抽象方法执行结果的Future。run() 方法由子类实现,执行正常的业务逻辑。在下面这段代码中,当存在subscriber时,便会调用Func0#call() 方法,而这个subscriber是在 toBlocking() 中被订阅的。
- 调用 isRequestCachingEnabled(); 判断请求结果缓存功能是否开启,如果开启并且命中了缓存,则会以Observable形式返回一个缓存结果
- 创建执行命令的Observable: hystrixObservable
- 当缓存处于开启状态并且没有命中缓存时,则创建一个"订阅了执行命令的Observable":HystrixCommandResponseFromCache
- 创建存储到缓存的Observable: HystrixCachedObservable
- 将toCache添加到缓存中,返回获取缓存的Observable:fromCache
- 如果添加失败: fromCache!=null, 则调用 toCache.unsubscribe() 方法,取消HystrixCachedObservable 的订阅
- 如果添加成功,则调用 toCache.toObservable(); 获得缓存Observable
- 当缓存特性没有开启时,则返回执行命令的Observable。
return Observable.defer(new Func0<Observable<R>>() {
@Override
public Observable<R> call() {
/* this is a stateful object so can only be used once */
// CAS保证命令只执行一次
if (!commandState.compareAndSet(CommandState.NOT_STARTED, CommandState.OBSERVABLE_CHAIN_CREATED)) {
IllegalStateException ex = new IllegalStateException("This instance can only be executed once. Please instantiate a new instance.");
//TODO make a new error type for this
throw new HystrixRuntimeException(FailureType.BAD_REQUEST_EXCEPTION, _cmd.getClass(), getLogMessagePrefix() + " command executed multiple times - this is not permitted.", ex, null);
}
// 命令开始时间戳
commandStartTimestamp = System.currentTimeMillis();
// 打印日志
if (properties.requestLogEnabled().get()) {
// log this command execution regardless of what happened
if (currentRequestLog != null) {
currentRequestLog.addExecutedCommand(_cmd);
}
}
// 缓存开关,缓存KEY(这个是Hystrix中请求缓存功能,hystrix支持将一个请求结果缓存起来,下一个具有相同key的请求将直接从缓存中取出结果,减少请求开销)
final boolean requestCacheEnabled = isRequestCachingEnabled();
final String cacheKey = getCacheKey();
/* try from cache first */
//如果开启了缓存机制,则从缓存中获取结果
if (requestCacheEnabled) {
HystrixCommandResponseFromCache<R> fromCache = (HystrixCommandResponseFromCache<R>) requestCache.get(cacheKey);
if (fromCache != null) {
isResponseFromCache = true;
return handleRequestCacheHitAndEmitValues(fromCache, _cmd);
}
}
// 声明执行命令的Observable
Observable<R> hystrixObservable =
Observable.defer(applyHystrixSemantics)
.map(wrapWithAllOnNextHooks);
Observable<R> afterCache;
// put in cache
// 声明执行命令的Observable
if (requestCacheEnabled && cacheKey != null) {
// wrap it for caching
HystrixCachedObservable<R> toCache = HystrixCachedObservable.from(hystrixObservable, _cmd);
HystrixCommandResponseFromCache<R> fromCache = (HystrixCommandResponseFromCache<R>) requestCache.putIfAbsent(cacheKey, toCache);
if (fromCache != null) {
// another thread beat us so we'll use the cached value instead
toCache.unsubscribe();
isResponseFromCache = true;
return handleRequestCacheHitAndEmitValues(fromCache, _cmd);
} else {
// we just created an ObservableCommand so we cast and return it
afterCache = toCache.toObservable();
}
} else {
afterCache = hystrixObservable;
}
return afterCache
.doOnTerminate(terminateCommandCleanup) // perform cleanup once (either on normal terminal state (this line), or unsubscribe (next line))
.doOnUnsubscribe(unsubscribeCommandCleanup) // perform cleanup once
.doOnCompleted(fireOnCompletedHook);
}
});
执行命令的Observable的定义如下,通过defer定义了一个 applyHystrixSemantics 的事件。
final Func0<Observable<R>> applyHystrixSemantics = new Func0<Observable<R>>() {
@Override
public Observable<R> call() {
// 当commandState处于UNSUBSCRIBED时,不执行命令
if (commandState.get().equals(CommandState.UNSUBSCRIBED)) {
return Observable.never();
}
//返回执行命令的Observable
return applyHystrixSemantics(_cmd);
}
};
applyHystrixSemantics
假设缓存特性未开启或者未命中缓存,那么代码将执行 applyHystrixSemantics 。
- 传入的_cmd是一个GenericCommand,最终执行这个command中的run方法,本质就是完成对queryOrder方法的代理。
- circuitBreaker.allowRequest() 如果为true,表示当前不处于熔断状态,正常执行,否则,调用 handleShortCircuitViaFallback 实现服务降级,如果我们配置了fallback方法,则会获得我们配置的fallback执行
执行路径为 : handleShortCircuitViaFallback ->getFallbackOrThrowException -> getFallbackObservable -> HystrixCommand.getFallbackObservable -> GenericCommand.getFallback();
- 如果当前hystrix处于未熔断状态,则
- getExecutionSemaphore 判断当前策略是否为信号量(TryableSemaphoreNoOp/TryableSemaphoreActual),如果是,则调用 tryAcquire 来获取信号量。如果当前信号量满了,则调用 handleSemaphoreRejectionViaFallback 方法。
- 调用 executeCommandAndObserve 获取命令执行Observable。
private Observable<R> applyHystrixSemantics(final AbstractCommand<R> _cmd) {
// mark that we're starting execution on the ExecutionHook
// if this hook throws an exception, then a fast-fail occurs with no fallback. No state is left inconsistent
executionHook.onStart(_cmd);
/* determine if we're allowed to execute */
if (circuitBreaker.allowRequest()) {
final TryableSemaphore executionSemaphore = getExecutionSemaphore();
final AtomicBoolean semaphoreHasBeenReleased = new AtomicBoolean(false);
final Action0 singleSemaphoreRelease = new Action0() {
@Override
public void call() {
if (semaphoreHasBeenReleased.compareAndSet(false, true)) {
executionSemaphore.release();
}
}
};
final Action1<Throwable> markExceptionThrown = new Action1<Throwable>() {
@Override
public void call(Throwable t) {
eventNotifier.markEvent(HystrixEventType.EXCEPTION_THROWN, commandKey);
}
};
if (executionSemaphore.tryAcquire()) {
try {
/* used to track userThreadExecutionTime */
executionResult = executionResult.setInvocationStartTime(System.currentTimeMillis());
return executeCommandAndObserve(_cmd)
.doOnError(markExceptionThrown)
.doOnTerminate(singleSemaphoreRelease)
.doOnUnsubscribe(singleSemaphoreRelease);
} catch (RuntimeException e) {
return Observable.error(e);
}
} else {
return handleSemaphoreRejectionViaFallback();
}
} else {
return handleShortCircuitViaFallback();
}
}