Gibs抽样
/* * Copyright (C) 2007 by * * Xuan-Hieu Phan * hieuxuan@ecei.tohoku.ac.jp or pxhieu@gmail.com * Graduate School of Information Sciences * Tohoku University * * Cam-Tu Nguyen * ncamtu@gmail.com * College of Technology * Vietnam National University, Hanoi * * JGibbsLDA is a free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2 of the License, * or (at your option) any later version. * * JGibbsLDA is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with JGibbsLDA; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ package jgibblda; import java.io.File; import java.util.Vector; public class Estimator { // output model protected Model trnModel; LDACmdOption option; public boolean init(LDACmdOption option){ this.option = option; trnModel = new Model(); if (option.est){ if (!trnModel.initNewModel(option)) return false; trnModel.data.localDict.writeWordMap(option.dir + File.separator + option.wordMapFileName); } else if (option.estc){ if (!trnModel.initEstimatedModel(option)) return false; } return true; } public void estimate(){ System.out.println("Sampling " + trnModel.niters + " iteration!"); int lastIter = trnModel.liter; for (trnModel.liter = lastIter + 1; trnModel.liter < trnModel.niters + lastIter; trnModel.liter++){ System.out.println("Iteration " + trnModel.liter + " ..."); // for all z_i for (int m = 0; m < trnModel.M; m++){ for (int n = 0; n < trnModel.data.docs[m].length; n++){ // z_i = z[m][n] // sample from p(z_i|z_-i, w) int topic = sampling(m, n); trnModel.z[m].set(n, topic); }// end for each word }// end for each document if (option.savestep > 0){ if (trnModel.liter % option.savestep == 0){ System.out.println("Saving the model at iteration " + trnModel.liter + " ..."); computeTheta(); computePhi(); trnModel.saveModel("model-" + Conversion.ZeroPad(trnModel.liter, 5)); } } }// end iterations System.out.println("Gibbs sampling completed!\n"); System.out.println("Saving the final model!\n"); computeTheta(); computePhi(); trnModel.liter--; trnModel.saveModel("model-final"); } /** * Do sampling * @param m document number * @param n word number * @return topic id */ public int sampling(int m, int n){ // remove z_i from the count variable int topic = trnModel.z[m].get(n); int w = trnModel.data.docs[m].words[n]; trnModel.nw[w][topic] -= 1; trnModel.nd[m][topic] -= 1; trnModel.nwsum[topic] -= 1; trnModel.ndsum[m] -= 1; double Vbeta = trnModel.V * trnModel.beta; double Kalpha = trnModel.K * trnModel.alpha; //do multinominal sampling via cumulative method for (int k = 0; k < trnModel.K; k++){ trnModel.p[k] = (trnModel.nw[w][k] + trnModel.beta)/(trnModel.nwsum[k] + Vbeta) * (trnModel.nd[m][k] + trnModel.alpha)/(trnModel.ndsum[m] + Kalpha); } // cumulate multinomial parameters for (int k = 1; k < trnModel.K; k++){ trnModel.p[k] += trnModel.p[k - 1]; } // scaled sample because of unnormalized p[] double u = Math.random() * trnModel.p[trnModel.K - 1]; for (topic = 0; topic < trnModel.K; topic++){ if (trnModel.p[topic] > u) //sample topic w.r.t distribution p break; } // add newly estimated z_i to count variables trnModel.nw[w][topic] += 1; trnModel.nd[m][topic] += 1; trnModel.nwsum[topic] += 1; trnModel.ndsum[m] += 1; return topic; } public void computeTheta(){ for (int m = 0; m < trnModel.M; m++){ for (int k = 0; k < trnModel.K; k++){ trnModel.theta[m][k] = (trnModel.nd[m][k] + trnModel.alpha) / (trnModel.ndsum[m] + trnModel.K * trnModel.alpha); } } } public void computePhi(){ for (int k = 0; k < trnModel.K; k++){ for (int w = 0; w < trnModel.V; w++){ trnModel.phi[k][w] = (trnModel.nw[w][k] + trnModel.beta) / (trnModel.nwsum[k] + trnModel.V * trnModel.beta); } } } }