hdu 5753
Permutation Bo
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 574 Accepted Submission(s): 346
Special Judge
Problem Description
There are two sequences h1∼hn and c1∼cn. h1∼hn is a permutation of 1∼n. particularly, h0=hn+1=0.
We define the expression [condition] is 1 when condition is True,is 0 when condition is False.
Define the function f(h)=∑ni=1ci[hi>hi−1 and hi>hi+1]
Bo have gotten the value of c1∼cn, and he wants to know the expected value of f(h).
We define the expression [condition] is 1 when condition is True,is 0 when condition is False.
Define the function f(h)=∑ni=1ci[hi>hi−1 and hi>hi+1]
Bo have gotten the value of c1∼cn, and he wants to know the expected value of f(h).
Input
This problem has multi test cases(no more than 12).
For each test case, the first line contains a non-negative integer n(1≤n≤1000), second line contains n non-negative integer ci(0≤ci≤1000).
For each test case, the first line contains a non-negative integer n(1≤n≤1000), second line contains n non-negative integer ci(0≤ci≤1000).
Output
For each test cases print a decimal - the expectation of f(h).
If the absolute error between your answer and the standard answer is no more than 10−4, your solution will be accepted.
If the absolute error between your answer and the standard answer is no more than 10−4, your solution will be accepted.
Sample Input
4
3 2 4 5
5
3 5 99 32 12
Sample Output
6.000000
52.833333
Source
题意:给你一个有n个数的数列c1~cn,h1~hn为1~n的排列,求ci[hi>hi-1 and hi>hi+1]的期望和。
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <vector> #include <queue> #include <stack> #include <map> #include <algorithm> #include <set> using namespace std; typedef long long ll; typedef unsigned long long Ull; const double eps = 1e-10; const int inf =0x7f7f7f7f; const double pi=acos(-1); const int mod=1e9+7; const int maxn=100000+10; #define MM(a,b) memset(a,b,sizeof(a)); #define FOR(i,n) for(int i=1;i<=n;i++) #define SC scanf #define PF printf #define PB push_back #define CT continue double c[1009]; int main() { int n; while(~SC("%d",&n)){ FOR(i,n) SC("%lf",&c[i]); double ans=(c[1]+c[n])/2; for(int i=2;i<=n-1;i++){ ans+=c[i]/3; } PF("%.9f\n",ans); } return 0; }
总是看了题解后才觉得题目好水,,,需要改变一下比赛时的心态了,,
因为假设两端的数字为大和小两种情况,中间的数字为大中小三种情况;
002 Permutation Bo
根据期望的线性性,我们可以分开考虑每个位置对答案的贡献。
可以发现当ii不在两边的时候和两端有六种大小关系,其中有两种是对答案有贡献的。
那么对答案的贡献就是\frac{c_i}{3}3ci。
在两端的话有两种大小关系,其中有一种对答案有贡献。
那么对答案的贡献就是\frac{c_i}{2}2ci。
复杂度是O(n)O(n)。
注意特判n=1n=1的情况。
你说,我们都会幸福的,对吧?