np.nan is an invalid document, expected byte or unicode string.
ValueError Traceback (most recent call last)
<ipython-input-12-1dc462ae8893> in <module>()
15 print('cv prepared!')
16 return df_x.astype(np.float64)
---> 17 df_test = get_feature(test_data,all_table,ready_cols,vec_col)
18 df_train = get_feature(train_data,all_table,ready_cols,vec_col)
<ipython-input-12-1dc462ae8893> in get_feature(df, all_data, cols, vec_col)
9 cv=CountVectorizer()
10 for feature in vec_col:
---> 11 cv.fit(all_data[feature])
12 df_a = cv.transform(df[feature])
13 df_x = sparse.hstack((df_x, df_a))
def get_feature(df,all_data,cols,vec_col):
enc = OneHotEncoder()
df_x=np.int64(df[cols])
cv=CountVectorizer()
for feature in vec_col:
cv.fit(all_data[feature])
df_a = cv.transform(df[feature])
df_x = sparse.hstack((df_x, df_a))
print('Done Feature '+ str(feature))
print('cv prepared!')
return df_x.astype(np.float64)
原因分析:我的all_data中存在nan的数据,我在数据读入的时候使用了all_table.fillna(-1),我理解只会填充空值,但是all_table中原本为nan的值,不会改变。改为all_table.fillna(-1),可执行。