cnn卷积理解

首先输入图像是28*28处理好的图。

第一层卷积:用5*5的卷积核进行卷积,输入为1通道,输出为32通道。即第一层的输入为:28*28图,第一层有32个不同的滤波器,对同一张图进行卷积,然后输出为32张特征图。需要32张特征图原因是能表示更多的特征。

第二层卷积:卷积核同样为5*5,但是输入为32通道,输出为64通道。即以第一层卷积池化激活后的图作为输入,有64个不同的滤波器,对32通道的图进行卷积,输出为64个特征图。

posted @ 2017-11-20 19:48  在下小白  阅读(828)  评论(0编辑  收藏  举报