MapReduce业务 - 图片关联计算
1.概述
最近在和人交流时谈到数据相似度和数据共性问题,而刚好在业务层面有类似的需求,今天和大家分享这类问题的解决思路,分享目录如下所示:
- 业务背景
- 编码实践
- 预览截图
下面开始今天的内容分享。
2.业务背景
目前有这样一个背景,在一大堆数据中,里面存放着图片的相关信息,如下图所示:
上图只是给大家列举的一个示例数据格式,第一列表示自身图片,第二、第三......等列表示与第一列相关联的图片信息。那么我们从这堆数据中如何找出他们拥有相同图片信息的图片。
2.1 实现思路
那么,我们在明确了上述需求后,下面我们来分析它的实现思路。首先,我们通过上图所要实现的目标结果,其最终计算结果如下所示:
pic_001pic_002 pic_003,pic_004,pic_005
pic_001pic_003 pic_002,pic_005
pic_001pic_004 pic_002,pic_005
pic_001pic_005 pic_002,pic_003,pic_004
......
结果如上所示,找出两两图片之间的共性图片,结果未列完整,只是列举了部分,具体结果大家可以参考截图预览的相关信息。
下面给大家介绍解决思路,通过观察数据,我们可以发现在上述数据当中,我们要计算图片两两的共性图片,可以从关联图片入手,在关联图片中我们可以找到共性图片的关联信息,比如:我们要计算pic001pic002图片的共性图片,我们可以在关联图片中找到两者(pic001pic002组合)后对应的自身图片(key),最后在将所有的key求并集即为两者的共性图片信息,具体信息如下图所示:
通过上图,我们可以知道具体的实现思路,步骤如下所示:
- 第一步:拆分数据,关联数据两两组合作为Key输出。
- 第二步:将相同Key分组,然后求并集得到计算结果。
这里使用一个MR来完成此项工作,在明白了实现思路后,我们接下来去实现对应的编码。
3.编码实践
- 拆分数据,两两组合。
public static class PictureMap extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context) throws IOException, InterruptedException { StringTokenizer strToken = new StringTokenizer(value.toString()); Text owner = new Text(); Set<String> set = new TreeSet<String>(); owner.set(strToken.nextToken()); while (strToken.hasMoreTokens()) { set.add(strToken.nextToken()); } String[] relations = new String[set.size()]; relations = set.toArray(relations); for (int i = 0; i < relations.length; i++) { for (int j = i + 1; j < relations.length; j++) { String outPutKey = relations[i] + relations[j]; context.write(new Text(outPutKey), owner); } } } }
- 按Key分组,求并集
public static class PictureReduce extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException { String common = ""; for (Text val : values) { if (common == "") { common = val.toString(); } else { common = common + "," + val.toString(); } } context.write(key, new Text(common)); } }
- 完整示例
package cn.hadoop.hdfs.example; import java.io.IOException; import java.util.Set; import java.util.StringTokenizer; import java.util.TreeSet; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import cn.hadoop.hdfs.util.HDFSUtils; import cn.hadoop.hdfs.util.SystemConfig; /** * @Date Aug 31, 2015 * * @Author dengjie * * @Note Find picture relations */ public class PictureRelations extends Configured implements Tool { private static Logger log = LoggerFactory.getLogger(PictureRelations.class); private static Configuration conf; static { String tag = SystemConfig.getProperty("dev.tag"); String[] hosts = SystemConfig.getPropertyArray(tag + ".hdfs.host", ","); conf = new Configuration(); conf.set("fs.defaultFS", "hdfs://cluster1"); conf.set("dfs.nameservices", "cluster1"); conf.set("dfs.ha.namenodes.cluster1", "nna,nns"); conf.set("dfs.namenode.rpc-address.cluster1.nna", hosts[0]); conf.set("dfs.namenode.rpc-address.cluster1.nns", hosts[1]); conf.set("dfs.client.failover.proxy.provider.cluster1", "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"); conf.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName()); conf.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName()); } public static class PictureMap extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context) throws IOException, InterruptedException { StringTokenizer strToken = new StringTokenizer(value.toString()); Text owner = new Text(); Set<String> set = new TreeSet<String>(); owner.set(strToken.nextToken()); while (strToken.hasMoreTokens()) { set.add(strToken.nextToken()); } String[] relations = new String[set.size()]; relations = set.toArray(relations); for (int i = 0; i < relations.length; i++) { for (int j = i + 1; j < relations.length; j++) { String outPutKey = relations[i] + relations[j]; context.write(new Text(outPutKey), owner); } } } } public static class PictureReduce extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException { String common = ""; for (Text val : values) { if (common == "") { common = val.toString(); } else { common = common + "," + val.toString(); } } context.write(key, new Text(common)); } } public int run(String[] args) throws Exception { final Job job = Job.getInstance(conf); job.setJarByClass(PictureMap.class); job.setMapperClass(PictureMap.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setReducerClass(PictureReduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(job, args[0]); FileOutputFormat.setOutputPath(job, new Path(args[1])); int status = job.waitForCompletion(true) ? 0 : 1; return status; } public static void main(String[] args) { try { if (args.length != 1) { log.warn("args length must be 1 and as date param"); return; } String tmpIn = SystemConfig.getProperty("hdfs.input.path.v2"); String tmpOut = SystemConfig.getProperty("hdfs.output.path.v2"); String inPath = String.format(tmpIn, "t_pic_20150801.log"); String outPath = String.format(tmpOut, "meta/" + args[0]); // bak dfs file to old HDFSUtils.bak(tmpOut, outPath, "meta/" + args[0] + "-old", conf); args = new String[] { inPath, outPath }; int res = ToolRunner.run(new Configuration(), new PictureRelations(), args); System.exit(res); } catch (Exception ex) { ex.printStackTrace(); log.error("Picture relations task has error,msg is" + ex.getMessage()); } } }
4.截图预览
关于计算结果,如下图所示:
5.总结
本篇博客只是从思路上实现了图片关联计算,在数据量大的情况下,是有待优化的,这里就不多做赘述了,后续有时间在为大家分析其中的细节。
6.结束语
这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!
联系方式:
邮箱:smartloli.org@gmail.com
QQ群(Hive与AI实战【新群】):935396818
QQ群(Hadoop - 交流社区1):424769183
QQ群(Kafka并不难学):825943084
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢!
邮箱:smartloli.org@gmail.com
QQ群(Hive与AI实战【新群】):935396818
QQ群(Hadoop - 交流社区1):424769183
QQ群(Kafka并不难学):825943084
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢!