GLSL下几个简单的Shader (转载)
在ShaderDesigner下编Shader是最为方便的,但这里先用OpenGL下的编程来举例
转载自 http://blog.csdn.net/boksic
这几个Shader的实际效果:
1.最简单的固定单色Shader
Vertex Shader
坐标经过投影矩阵变换:vTrans = projection * modelview * incomingVertex
- void main()
- {
- gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex;
- }
或者更简单的方式,使用ftransform函数
- void main()
- {
- gl_Position = ftransform();
- }
Fragment Shader
赋予像素一个固定值的颜色
- void main()
- {
- gl_FragColor = vec4(0.4,0.4,0.8,1.0);
- }
2.颜色Shader
在OpenGL程序当中使用 glColor函数指定颜色时,接收该颜色值的Shader
例如OpenGL程序当中画一个红色茶壶:
- glColor3f(1, 0, 0);
- glutSolidTeapot(1);
glColor在Shader当中总共涉及四个值
- attribute vec4 gl_Color;
- varying vec4 gl_FrontColor; // writable on the vertex shader
- varying vec4 gl_BackColor; // writable on the vertex shader
- varying vec4 gl_Color; // readable on the fragment shader
流程如下:
OpenGL程序使用glColor函数后,将颜色值以attribute gl_Color的形式传给了Vertex Shader,
Vertext Shader接受到后开始计算gl_FontColor和gl_BackColor,而在Fragment
Shader则会接受到一个由FontColor和BackColor插值计算出来的varying
gl_Color(注意:该gl_Color与Vertex Shader当中的不同),因而可以基于gl_Color开始计算gl_FragColor
Vertex Shader
- void main()
- {
- gl_FrontColor = gl_Color;
- gl_Position = ftransform();
- }
Fragment Shader
- void main()
- {
- gl_FragColor = gl_Color;
- }
3.动态变形Shader
随着时间变动,改变渲染坐标。关键在于如何把OpenGl的变量传递给Shader
比如在OpenGL中设定一个时间变量time,初始化为0,每次渲染时增加0.1:
- float t = 0;
- void renderScene(void) {
- ...
- t += 0.001;
- }
那么将其传递给Shader需要做的是:
1.在初始化阶段使用glGetUniformLocation获取Shader里变量的存取位置
2.在渲染阶段使用glUniform给该存取位置变量赋值
- GLint loc;
- float t = 0;
- void renderScene(void) {
- ...
- glUniform1f(loc, t);
- t += 0.001;
- }
- void setShaders() {
- ...
- glUseProgram(p);
- loc = glGetUniformLocation(p, "time");
- }
最后在shader中使用时声明一下即可使用(本例当中让图形沿x轴3d翻转)
Vertex Shader
- uniform float time;
- void main()
- {
- gl_FrontColor = gl_Color;
- vec4 v = vec4(gl_Vertex);
- v.y=v.y*cos(time)+v.y*sin(time);
- v.z=-v.y*sin(time)+cos(time)*v.z;
- gl_Position = gl_ModelViewProjectionMatrix * v;
- }
Fragment Shader
- void main()
- {
- gl_FragColor = gl_Color;
- }
4.Lambert Shader
Lambert模型下的Shader,只考虑漫反射,反射强度正比于入射光与法线方向的夹角余弦值:Io= Ld*Md*cosθ
Ld是散射光颜色(gl_LightSource[0].diffuse),Md是材质散射系数(gl_FrontMaterial.diffuse),夹角余弦cosθ可由正规化的法线向量(normal)和入射光向量(lightDir)点乘得到。
OpenGL当中可以对材质和光照的属性进行设置
- float lpos[4] = { 1, 0.5, 1, 0 };
- float lAmb[4] = { 0.2, 0.5, 1.0, 1 };
- float lDif[4] = { 0.2, 1.0, 1.0, 1 };
- float lSpe[4] = { 1.0, 1.0, 1.0, 1 };
- glLightfv(GL_LIGHT0, GL_POSITION, lpos);
- glLightfv(GL_LIGHT0, GL_AMBIENT, lAmb);
- glLightfv(GL_LIGHT0, GL_DIFFUSE, lDif);
- glLightfv(GL_LIGHT0, GL_SPECULAR, lSpe);
- GLfloat ambient [] = { 0.1f, 0.1f, 0.1f, 1.0f};
- GLfloat diffuse [] = { 1.0f, 0.0f, 0.0f, 1.0f};
- GLfloat specular [] = { 1.0f, 1.0f, 1.0f, 1.0f};
- GLfloat shininess[] = { 0.0f};
- glMaterialfv(GL_FRONT, GL_AMBIENT, ambient);
- glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);
- glMaterialfv(GL_FRONT, GL_SPECULAR, specular);
- glMaterialfv(GL_FRONT, GL_SHININESS, shininess);
Vertex Shader
- void main() {
- vec3 normal, lightDir;
- vec4 diffuse;
- float NdotL;
- /* 法线向量 */
- normal = normalize(gl_NormalMatrix * gl_Normal);
- /* 入射光向量*/
- lightDir = normalize(vec3(gl_LightSource[0].position)); /* cosθ */
- NdotL = max(dot(normal, lightDir), 0.0);/* 散射项 */
- diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
- gl_FrontColor = NdotL * diffuse;gl_Position = ftransform();
- }
Fragment Shader
- void main()
- {
- gl_FragColor = gl_Color;
- }
如果再考虑上环境散射项,那么OpenGL中使用glLightfv来设定环境光
- float lpos[4] = { 1, 0.5, 1, 0 };
- float lAmb[4] = { 0.2, 0.5, 1, 1 };
- void renderScene(void) {
- ...
- glLightfv(GL_LIGHT0, GL_POSITION, lpos);
- glLightfv(GL_LIGHT0, GL_AMBIENT, lAmb);
- ...
- }
Vertex Shader
- void main()
- {
- vec3 normal, lightDir;
- vec4 diffuse, ambient, globalAmbient;
- float NdotL;
- normal = normalize(gl_NormalMatrix * gl_Normal);
- lightDir = normalize(vec3(gl_LightSource[0].position));
- NdotL = max(dot(normal, lightDir), 0.0);
- diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
- /* Compute the ambient and globalAmbient terms */
- ambient = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;
- globalAmbient = gl_LightModel.ambient * gl_FrontMaterial.ambient;
- gl_FrontColor = NdotL * diffuse + globalAmbient + ambient;
- gl_Position = ftransform();
- }
5.Blinn-Phong Shader
Phong光照模型,考虑反射成分(specular项)。其中Shininess在OpenGL中材质可用glMaterialfv进行设置
- void main()
- {
- vec3 normal, lightDir;
- vec4 diffuse, ambient, globalAmbient,specular;
- float NdotL;float NdotHV;
- normal = normalize(gl_NormalMatrix * gl_Normal);
- lightDir = normalize(vec3(gl_LightSource[0].position));
- NdotL = max(dot(normal, lightDir), 0.0);
- diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
- /* Compute the ambient and globalAmbient terms */
- ambient = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;
- globalAmbient = gl_LightModel.ambient * gl_FrontMaterial.ambient;
- /* compute the specular term if NdotL is larger than zero */
- if (NdotL > 0.0) {
- // normalize the half-vector, and then compute the
- // cosine (dot product) with the normal
- NdotHV = max(dot(normal, gl_LightSource[0].halfVector.xyz),0.0);
- specular = gl_FrontMaterial.specular * gl_LightSource[0].specular *
- pow(NdotHV,gl_FrontMaterial.shininess);
- }
- gl_FrontColor = NdotL * diffuse + globalAmbient + ambient +specular;
- gl_Position = ftransform();
- }
6.法线Shader
将法线方向映射到颜色空间中,可用于生成法线贴图
- void main()
- {
- vec3 normal;
- normal = normalize(gl_NormalMatrix * gl_Normal);
- gl_FrontColor = (vec4(normal.x,normal.y,normal.z,1.0)+1)/2;
- gl_Position = ftransform();
- }