线性回归推导

样本(\(x_{i}\),\(y_{i}\))个数为\(m\):

\[\{x_{1},x_{2},x_{3}...x_{m}\} \]

\[\{y_{1},y_{2},y_{3}...y_{m}\} \]

其中\(x_{i}\)为\(n-1\)维向量(在最后添加一个1,和\(w\)的维度对齐,用于向量相乘):

\[x_{i}=\{x_{i1},x_{i2},x_{i3}...x_{i(n-1)},1\} \]

其中\(w\)为\(n\)维向量:

\[w=\{w_{1},w_{2},w_{3}...w_{n}\} \]

回归函数:

\[h_{w}(x_{i})=wx_{i} \]

损失函数:

\[J(w)=\frac{1}{2}\sum_{i=1}^{m}(h_{w}(x_{i})-y_{i})^2 \]

\[求w->min_{J(w)} \]

损失函数对\(w\)中的每个\(w_{j}\)求偏导数:

\[\frac{\partial J(w)}{\partial w_{j}}=\frac{\partial}{\partial w_{j}}\sum_{i=1}^{m}(h_{w}(x_{i})-y_{i})^2 \]

\[=\frac{1}{2}*2*\sum_{i=1}^{m}(h_{w}(x_{i})-y_{i})*\frac{\partial (h_{w}(x_{i})-y_{i})}{\partial w_{j}} \]

\[=\sum_{i=1}^{m}(h_{w}(x_{i})-y_{i})*\frac{\partial (wx_{i}-y_{i})}{\partial w_{j}} \]

\[\frac{\partial J(w)}{\partial w_{j}}=\sum_{i=1}^{m}(h_{w}(x_{i})-y_{i})*x_{ij} \]

更新\(w\)中的每个\(w_{j}\)的值,其中\(\alpha\)为学习速度:

\[w_{j}:=w_{j}-\alpha*\frac{\partial J(w)}{\partial w_{j}} \]

批量梯度下降:使用所有样本值进行更新\(w\)中的每个\(w_{j}\)的值

\[w_{j}:=w_{j}-\alpha*\sum_{i=1}^{m}(h_{w}(x_{i})-y_{i})*x_{ij} \]

posted @ 2019-06-15 15:59  JohnRed  阅读(323)  评论(0编辑  收藏  举报