网络编程(终)
GIL与普通互斥锁区别
# 1.先验证GIL的存在
from threading import Thread, Lock
import time
money = 100
def task():
global money
money -= 1
for i in range(100): # 创建一百个线程
t = Thread(target=task)
t.start()
print(money) # 0
# 2.再验证不同数据加不同锁
from threading import Thread, Lock
import time
money = 100
mutex = Lock()
def task():
global money
mutex.acquire()
tmp = money
time.sleep(0.1)
money = tmp - 1
mutex.release()
"""
抢锁放锁也有简便写法(with上下文管理)
with mutex:
pass
"""
t_list = []
for i in range(100): # 创建一百个线程
t = Thread(target=task)
t.start()
t_list.append(t)
for t in t_list:
t.join()
# 为了确保结构正确 应该等待所有的线程运行完毕再打印money
print(money) # 0,如果不加锁(抢锁,放锁)的话,结果为99
GIL是一个纯理论知识 在实际工作中根本无需考虑它的存在
GIL作用面很窄 仅限于解释器级别
后期我们要想保证数据的安全应该自定义互斥锁(使用别人封装好的工具)
验证多线程
两个大前提
CPU的个数
单个
多个
任务的类型
IO密集型
计算密集型
单个CPU
多个IO密集型任务
多进程:浪费资源 无法利用多个CPU
多线程:节省资源 切换+保存状态
多个计算密集型任务
多进程:耗时更长 创建进程的消耗+切换消耗
多线程:耗时较短 切换消耗
多个CPU
多个IO密集型任务
多进程:浪费资源 多个CPU无用武之地
多线程:节省资源 切换+保存状态
多个计算密集型任务
多进程:利用多核 速度更快
多线程:速度较慢
结论:多进程和多线程都有具体的应用场景 尤其是多线程并不是没有用
# 计算密集型
from threading import Thread
from multiprocessing import Process
import os
import time
def work():
res = 1
for i in range(1, 100000):
res *= i
if __name__ == '__main__':
print(os.cpu_count()) # 8 查看当前计算机CPU个数
start_time = time.time()
'''进程
p_list = []
for i in range(12):
p = Process(target=work)
p.start()
p_list.append(p)
for p in p_list:
p.join()
'''
# 线程
t_list = []
for i in range(12):
t = Thread(target=work)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print('总耗时:%s' % (time.time() - start_time))
'''多进程耗时9.794561386108398,多线程耗时31.453563928604126,越牛逼的电脑差距越大,该情况下多进程好,windows效率比mac低'''
# IO密集型
def work():
time.sleep(2) # 模拟纯IO操作
if __name__ == '__main__':
start_time = time.time()
t_list = []
'''线程
for i in range(100):
t = Thread(target=work)
t.start()
for t in t_list:
t.join()
'''
# 进程
p_list = []
for i in range(100):
p = Process(target=work)
p.start()
for p in p_list:
p.join()
print('总耗时:%s' % (time.time() - start_time))
'''
多线程耗时0.015623331069946289,多进程耗时0.4061555862426758,该情况下多线程更优
'''
死锁现象
# 锁就算掌握了如何抢 如何放 也会产生死锁现象
from threading import Thread, Lock
import time
# 产生两把(复习 面向对象和单例模式):每天都可以写写单例啊 算法啊...
mutexA = Lock()
mutexB = Lock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
mutexA.acquire()
print(f'{self.name}抢到了A锁')
mutexB.acquire()
print(f'{self.name}抢到了B锁')
mutexB.release()
mutexA.release()
def f2(self):
mutexB.acquire()
print(f'{self.name}抢到了B锁')
time.sleep(2)
mutexA.acquire()
print(f'{self.name}抢到了A锁')
mutexA.release()
mutexB.release()
for i in range(20):
t = MyThread()
t.start()
信号量(了解)
信号量在不同的知识体系中 展示出来的功能是不一样的
eg:
在并发编程中信号量意思是多把互斥锁
在django框架中信号量意思是达到某个条件自动触发特定功能
如果将自定义互斥锁比喻成是单个厕所(一个坑位)
那么信号量相当于是公共厕所(多个坑位)
from threading import Thread, Semaphore
import time
import random
sp = Semaphore(5) # 创建一个有五个坑位(带门的)的公共厕所
def task(name):
sp.acquire() # 抢锁
print('%s正在蹲坑' % name)
time.sleep(random.randint(1, 5))
sp.release() # 放锁
for i in range(1, 31):
t = Thread(target=task, args=('伞兵%s号' % i, ))
t.start()
# 只要是跟锁相关的几乎都不会让我们自己去写 后期还是用模块
event事件(了解)
from threading import Thread, Event
import time
event = Event() # 类似于造了一个红绿灯
def light():
print('红灯亮着的 所有人都不能动')
time.sleep(3)
print('绿灯亮了 油门踩到底 给我冲!!!')
event.set()
def car(name):
print('%s正在等红灯' % name)
event.wait()
print('%s加油门 飙车了' % name)
t = Thread(target=light)
t.start()
for i in range(20):
t = Thread(target=car, args=('熊猫PRO%s' % i,))
t.start()
有上述代码我们可以知道子线程的运行可以由其他子线程决定,这种效果我们也可以通过其他手段实现 比如队列(只不过没有event简便)
进程池与线程池(重点)
服务端必备的三要素
1.24小时不间断提供服务
2.固定的ip和port
3.支持高并发
回顾:
TCP服务端实现并发
多进程:来一个客户端就开一个进程(临时工)
多线程:来一个客户端就开一个线程(临时工)
问题:
计算机硬件是有物理极限的 我们不可能无限制的创建进程和线程
措施:
池:
保证计算机硬件安全的情况下提升程序的运行效率
进程池:
提前创建好固定数量的进程 后续反复使用这些进程(合同工)
线程池:
提前创建好固定数量的线程 后续反复使用这些线程(合同工)
如果任务超出了池子里面的最大进程或线程数 则原地等待
强调:
进程池和线程池其实降低了程序的运行效率 但是保证了硬件的安全!!!
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
# 线程池
pool = ThreadPoolExecutor(5) # 线程池线程数默认是CPU个数的五倍 也可以自定义
'''上面的代码执行之后就会立刻创建五个等待工作的线程'''
'''不应该自己主动等待结果 应该让异步提交自动提醒>>>:异步回调机制'''
pool.submit(task, i).add_done_callback(func)
"""add_done_callback只要任务有结果了 就会自动调用括号内的函数处理"""
# 进程池
pool = ProcessPoolExecutor(5) # 进程池进程数默认是CPU个数 也可以自定义
'''上面的代码执行之后就会立刻创建五个等待工作的进程'''
pool.submit(task, i).add_done_callback(func)
协程
进程:资源单位
线程:执行单位
协程:单线程下实现并发
并发的概念:切换+保存状态
首先需要强调的是协程完全是程序员自己意淫出来的名词!!!
对于操作系统而言之认识进程和线程
协程就是自己通过代码来检测程序的IO操作并自己处理 让CPU感觉不到IO的存在从而最大幅度的占用CPU
类似于一个人同时干接待和服务客人的活 在接待与服务之间来回切换!!!
保存的功能 我们其实接触过 yield 但是无法做到检测IO切换
from gevent import monkey;monkey.patch_all() # 固定编写 用于检测所有的IO操作,就算格式报错也别乱改
from gevent import spawn
import time
def play(name):
print('%s play 1' % name)
time.sleep(5)
print('%s play 2' % name)
def eat(name):
print('%s eat 1' % name)
time.sleep(3)
print('%s eat 2' % name)
start_time = time.time()
g1 = spawn(play, 'jason')
g2 = spawn(eat, 'jason')
g1.join() # 等待检测任务执行完毕
g2.join() # 等待检测任务执行完毕
print('总耗时:', time.time() - start_time) # 正常串行肯定是8s+
# 5.00609827041626 代码控制切换
基于协程实现TCP服务端并发
# 主要用于服务端
from gevent import monkey;monkey.patch_all()
from gevent import spawn
import socket
def communication(sock):
while True:
data = sock.recv(1024) # IO操作
print(data.decode('utf8'))
sock.send(data.upper())
def get_server():
server = socket.socket()
server.bind(('127.0.0.1', 8080))
server.listen(5)
while True:
sock, addr = server.accept() # IO操作
spawn(communication, sock)
g1 = spawn(get_server)
g1.join()
结论:
python可以通过开设多进程,在多进程下开设多线程,在多线程使用协程,从而让程序执行的效率达到极致。但是实际业务中很少需要如此之高的效率(一直占着CPU不放)。因为大部分程序都是IO密集型的,所以协程我们知道它的存在即可 几乎不会真正去自己编写
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人