堆排序的python实现
#!/usr/bin/env python # -*- coding: utf-8 -*- import heapq import copy import datetime import random def get_max_heap(heap, size, root): # 在堆中做结构调整使得父节点的值大于子节点 left = 2 * root + 1 right = left + 1 larger = root if left < size and heap[larger] < heap[left]: # 保证最大值不会被重新排序 larger = left if right < size and heap[larger] < heap[right]: # 保证最大值不会被重新排序 larger = right if larger != root: # 如果做了堆调整则larger的值等于左节点或者右节点的,这个时候做对调值操作 heap[larger], heap[root] = heap[root], heap[larger] get_max_heap(heap, size, larger) def build_heap(heap): # 构造一个堆,将堆中所有数据重新排序 for index in xrange(len(heap) / 2 - 1, -1, -1): # 从第一个非叶子节点开始 get_max_heap(heap, len(heap), index) def sort(heap): build_heap(heap) # 获得一个大顶堆 for index in xrange(len(heap) - 1, -1, -1): heap[0], heap[index] = heap[index], heap[0] # 将最大值调到最后 get_max_heap(heap, index, 0) # size递减,保证最大值不会被重新排序 return heap if __name__ == '__main__': # a = eval(raw_input('请输入一个待排序列表\n')) a = [random.randint(1, 2000) for i in range(1000)] b = copy.deepcopy(a) b_begin = datetime.datetime.now() sort(b) b_end = datetime.datetime.now() print 'my method use %s' % (b_end - b_begin).total_seconds() c = copy.deepcopy(a) c_begin = datetime.datetime.now() heapq.heapify(c) c_end = datetime.datetime.now() print 'inner method use %s' % (c_end - c_begin).total_seconds() —————————————————————————————— my method use 0.011 inner method use 0.001
#可以看到,我们实现的排序算法在时间上不如内置的heapq.heapify()