导航

 
#-*-coding:utf-8-*-
# coding:utf-8
import sys, os
from PIL.Image import *
from PIL.ImageDraw import *
import shutil
import numpy as np
import os
import time
from sklearn.externals import joblib
from sklearn.neighbors import KNeighborsClassifier
#pip install pillow numpy sklearn

# 二值数组
t2val = {}
save_path="2.jpg"
#
# def twoValue(image, G):
# for y in range(0, image.size[1]):
# for x in range(0, image.size[0]):
# g = image.getpixel((x, y))
# if g > G:
# t2val[(x, y)] = 1
# else:
# t2val[(x, y)] = 0
#
#
# # 根据一个点A的RGB值,与周围的8个点的RBG值比较,设定一个值N(0 <N <8),当A的RGB值与周围8个点的RGB相等数小于N时,此点为噪点
# # G: Integer 图像二值化阀值
# # N: Integer 降噪率 0 <N <8
# # Z: Integer 降噪次数
# # 输出
# # 0:降噪成功
# # 1:降噪失败
# def clearNoise(image, N, Z):
# for i in range(0, Z):
# t2val[(0, 0)] = 1
# t2val[(image.size[0] - 1, image.size[1] - 1)] = 1
#
# for x in range(1, image.size[0] - 1):
# for y in range(1, image.size[1] - 1):
# nearDots = 0
# L = t2val[(x, y)]
# if L == t2val[(x - 1, y - 1)]:
# nearDots += 1
# if L == t2val[(x - 1, y)]:
# nearDots += 1
# if L == t2val[(x - 1, y + 1)]:
# nearDots += 1
# if L == t2val[(x, y - 1)]:
# nearDots += 1
# if L == t2val[(x, y + 1)]:
# nearDots += 1
# if L == t2val[(x + 1, y - 1)]:
# nearDots += 1
# if L == t2val[(x + 1, y)]:
# nearDots += 1
# if L == t2val[(x + 1, y + 1)]:
# nearDots += 1
#
# if nearDots < N:
# t2val[(x, y)] = 1
#
#
# def saveImage(filename, size):
# image = Image.new("1", size)
# draw = Draw(image)
#
# for x in range(0, size[0]):
# for y in range(0, size[1]):
# draw.point((x, y), t2val[(x, y)])
#
# image.save(filename)
#
# for i in range(1, 101):
#
# path = r"C:\Users\Administrator\Desktop\11.png"
# image = Image.open(path)
#
# image = image.convert('L')
# twoValue(image, 198)
# clearNoise(image, 3, 1)
# path1 = save_path
# saveImage(path1, image.size)
#
# #切割验证码
# shutil.rmtree('test1')
# os.makedir('test1')
# def smartSliceImg(img, outDir, ii,count=4, p_w=3):
# '''
# :param img:
# :param outDir:
# :param count: 图片中有多少个图片
# :param p_w: 对切割地方多少像素内进行判断
# :return:
# '''
# w, h = img.size
# pixdata = img.load()
# eachWidth = int(w / count)
# beforeX = 0
# for i in range(count):
#
# allBCount = []
# nextXOri = (i + 1) * eachWidth
#
# for x in range(nextXOri - p_w, nextXOri + p_w):
# if x >= w:
# x = w - 1
# if x < 0:
# x = 0
# b_count = 0
# for y in range(h):
# if pixdata[x, y] == 0:
# b_count += 1
# allBCount.append({'x_pos': x, 'count': b_count})
# sort = sorted(allBCount, key=lambda e: e.get('count'))
#
# nextX = sort[0]['x_pos']
# box = (beforeX, 0, nextX, h)
# img.crop(box).save(outDir + str(ii) + "_" + str(i) + ".png")
# beforeX = nextX
#
# for ii in range(1, 101):
# path = save_path
# img = Image.open(path)
# outDir = 'test1/'
# smartSliceImg(img, outDir, ii,count=4, p_w=3)


# 训练

def load_dataset():
X = []
y = []
for i in "23456789ABVDEFGHKMNPRSTUVWXYZ":
target_path = "fenlei/" + i
print(target_path)
for title in os.listdir(target_path):
pix = np.asarray(Image.open(os.path.join(target_path, title)).convert('L'))
X.append(pix.reshape(25 * 30))
y.append(target_path.split('/')[-1])

X = np.asarray(X)
y = np.asarray(y)
return X, y

def check_everyone(model):
pre_list = []
y_list = []
for i in "23456789ABCDEFGHKMNPRSTUVWXYZ":
part_path = "part/" + i
for title in os.listdir(part_path):
pix = np.asarray(Image.open(os.path.join(part_path, title)).convert('L'))
pix = pix.reshape(25 * 30)
pre_list.append(pix)
y_list.append(part_path.split('/')[-1])
pre_list = np.asarray(pre_list)
y_list = np.asarray(y_list)

result_list = model.predict(pre_list)
acc = 0
for i in result_list == y_list:
print(result_list,y_list,)

if i == np.bool(True):
acc += 1
print(acc, acc / len(result_list))


X, y = load_dataset()
knn = KNeighborsClassifier()
knn.fit(X, y)
joblib.dump(knn, 'yipai.model')
check_everyone(knn)

  

posted on 2019-12-10 17:55  slqt  阅读(531)  评论(0编辑  收藏  举报