70. 爬楼梯 ----- 动态规划、滚动数组(技巧动态规划)、数学方法:特征方程、矩阵快速幂

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

 

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
 

提示:

1 <= n <= 45

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

完整动态规划:

class Solution {
    // 动态规划
        // 爬一个台阶有1种方法 1
        //爬两个台阶有2种 1+1,2
        //爬三个台阶有3种 1+1+1,2+1,1+2
        // 爬四个台阶有5种 1+1+1+1,2+1+1,1+2+1,1+1+2,2+2
        //爬五个台阶有8种 1+1+1+1+1,2+1+1+1,1+2+1+1+,1+1+2+1,1+1+1+2,2+2+1,2+1+2,1+2+2
        //爬n个台阶有 (n-1)+(n-2)种    
public:
    int climbStairs(int n) {
        if (n == 1) {
            return 1;
        }
        vector<int> dp(n+1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; ++i) {
            dp [i] = dp [i-1] + dp[i -2];
        }
        return dp[n];
    }
};

 

技巧动态规划(滚动数组):

class Solution {
public:
    int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
};

 

特征方程:

class Solution {
public:
    int climbStairs(int n) {
        double sqrt5 = sqrt(5);
        double fibn = pow((1 + sqrt5) / 2, n + 1) - pow((1 - sqrt5) / 2, n + 1);
        return (int)round(fibn / sqrt5);
    }
};

矩阵快速幂:

class Solution {
public:
    vector<vector<long long>> multiply(vector<vector<long long>> &a, vector<vector<long long>> &b) {
        vector<vector<long long>> c(2, vector<long long>(2));
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];
            }
        }
        return c;
    }

    vector<vector<long long>> matrixPow(vector<vector<long long>> a, int n) {
        vector<vector<long long>> ret = {{1, 0}, {0, 1}};
        while (n > 0) {
            if ((n & 1) == 1) {
                ret = multiply(ret, a);
            }
            n >>= 1;
            a = multiply(a, a);
        }
        return ret;
    }

    int climbStairs(int n) {
        vector<vector<long long>> ret = {{1, 1}, {1, 0}};
        vector<vector<long long>> res = matrixPow(ret, n);
        return res[0][0];
    }
};

 

posted @ 2022-11-15 13:10  slowlydance2me  阅读(23)  评论(0编辑  收藏  举报