ZOJ3662:Math Magic(全然背包)

Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common multiple) of two positive numbers can be solved easily because of a * b = GCD (a, b) * LCM (a, b).

In class, I raised a new idea: "how to calculate the LCM of K numbers". It's also an easy problem indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding algorithm. Teacher just smiled and smiled...

After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too. If we know three parameters N, M, K, and two equations:

1. SUM (A1, A2, ..., Ai, Ai+1,..., AK) = N 
2. LCM (A1, A2, ..., Ai, Ai+1,..., AK) = M

Can you calculate how many kinds of solutions are there for Ai (Ai are all positive numbers). I began to roll cold sweat but teacher just smiled and smiled.

Can you solve this problem in 1 minute?

Input

There are multiple test cases.

Each test case contains three integers N, M, K. (1 ≤ N, M ≤ 1,000, 1 ≤ K ≤ 100)

Output

For each test case, output an integer indicating the number of solution modulo 1,000,000,007(1e9 + 7).

You can get more details in the sample and hint below.

Sample Input

4 2 2
3 2 2

Sample Output

1
2


题意:
给出n,m,k,问k个数的和为n。最小公倍数为m的情况有几种

思路:
由于最小公倍数为m,能够知道这些数必定是m的因子,那么我们仅仅须要选出这全部的因子,拿这些因子来背包就能够了
dp[i][j][k]表示放了i个数,和为j。公倍数为k的情况有几种
可是又问题。首先的问题内存,直接存明显爆内存。那么我们须要优化
1.由于我如今放第i个数,必定是依据放好的i-1个数来计算的。我们仅仅须要用滚动数组来解决就可以
2.对于公倍数,必定不能超过m,而我全部这些m的因子中的数字,不管选哪些,选多少,他们的最小公倍数依旧是这些因子之中的,那么我们能够进行离散化
解决好了之后就是全然背包的问题了


#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
#include <math.h>
using namespace std;

const int mod = 1e9+7;

int dp[2][1005][105];
int a[1005],len,pos[1005];
int n,m,k;
int hash[1005][1005];

int gcd(int a,int b)
{
    return b==0?

a:gcd(b,a%b); } int lcm(int a,int b) { return a/gcd(a,b)*b; } int main() { int i,j,x,y; for(i = 1; i<=1000; i++)//预处理最小公倍数 { for(j = 1; j<=1000; j++) hash[i][j] = lcm(i,j); } while(~scanf("%d%d%d",&n,&m,&k)) { len = 0; memset(pos,-1,sizeof(pos)); for(i = 1; i<=m; i++) { if(m%i==0) { a[len] = i; pos[i] = len++;//离散化 } } memset(dp[0],-1,sizeof(dp[0])); dp[0][0][0] = 1; for(i = 1; i<=k; i++) { memset(dp[i%2],-1,sizeof(dp[i%2])); for(j = i-1; j<=n; j++)//由于最小必定放1,而我前面已经放了i-1个数了。前面的和最少必定是i-1 { for(x = 0; x<len; x++)//枚举前面数字的公倍数 { if(dp[(i+1)%2][j][x]==-1) continue; for(y = 0; y<len && (a[y]+j)<=n; y++)//枚举这一位放哪些数 { int r = hash[a[y]][a[x]]; int s = j+a[y]; if(pos[r]!=-1 && r<=m) { r = pos[r]; if(dp[i%2][s][r] == -1) dp[i%2][s][r] = 0; dp[i%2][s][r]+=dp[(i+1)%2][j][x]; dp[i%2][s][r]%=mod; } } } } } if(dp[k%2][n][pos[m]]==-1) printf("0\n"); else printf("%d\n",dp[k%2][n][pos[m]]); } return 0; }



posted on 2017-05-24 19:59  slgkaifa  阅读(161)  评论(0编辑  收藏  举报

导航