斯坦福机器学习课程 Exercise 习题四
Exercise 4: Logistic Regression and Newton’s Method
回顾一下线性回归
hθ(x)=θTx
Logistic Regression
hθ(x)=11+e−θTx=p{y=1|x;θ}
cost(hθ(x),y)的选择
cost(hθ(x),y)=−loghθ(x) (y=1)
选择对数似然损失函数作为逻辑回归的Cost Function 原因是这个cost函数是凸函数,具有碗状的形状,而凸函数具有良好的性质:对
于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值点。
当hθ(x)=1的时候cost =0 反之cost=+∞
同理,cost(hθ(x),y)=−log(1−hθ(x)) (y=0)
当hθ(x)=0的时候cost =0 反之cost=+∞
in summarize
cost(hθ(x),y)=−y loghθ(x)−(1−y)log(1−hθ(x)) (y=1 or 0)
J(θ)=1mcost(hθ(x(i)),y(i))
J(θ)=−1m∑i=1m[y loghθ(x)+(1−y)log(1−hθ(x))]
牛顿迭代法
xn+1=xn−f′(xn)f′′(xn)
decision boundary
hθ(x)=1−g(θTx)=0.5
θ0+θ1x1+θ2x2=0
x2=−1θ2(θ0+θ1x1)
plot_y=−1θ2(θ0+θ1X)
预测不被admitted的概率
prob=1−g(θTx)
for i=1:MAX_ITR
z=x*theta;
h=g(z);
deltaJ= (1/m).* x' * (h - y);
Hessian=(1/m).*x'* diag(h) * diag(1-h) * x;
J(i)= (1/m) * sum (-y.*log(h) - (1-y).*log(1-h) );
theta = theta - Hessian \ deltaJ;
end
关键的地方是 Hessian矩阵的求法:
Ng的课程讲到
H=1m∑i=1m[h(x(i))R(1−h(x(i)))R∗(x(i))∗(x(i))T]
后面的则是
R(n+1)×1∗R1×(n+1)
h(x(i))是向量,因此在矩阵运算的时候,将向量表示成对角矩阵。
diag(h)∗diag(1−h)
本文完
分类:
机器学习
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!