吴恩达机器学习笔记49-主成分分析问题(Principal Component Analysis Problem Formulation)

  主成分分析(PCA)是最常见的降维算法。

  在PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据
都投射到该向量上时,我们希望投射平均均方误差能尽可能地小。方向向量是一个经过原点
的向量,而投射误差是从特征向量向该方向向量作垂线的长度。

  下面给出主成分分析问题的描述:
问题是要将𝑛维数据降至𝑘维,目标是找到向量𝑢(1) ,𝑢(2) ,...,𝑢(𝑘)使得总的投射误差最小。
  主成分分析与线性回顾的比较:

  主成分分析与线性回归是两种不同的算法。主成分分析最小化的是投射误差(Projected
Error),而线性回归尝试的是最小化预测误差。线性回归的目的是预测结果,而主成分分析
不作任何预测。

上图中,左边的是线性回归的误差(垂直于横轴投影),右边则是主要成分分析的误差
(垂直于红线投影)。

  PCA 将𝑛个特征降维到𝑘个,可以用来进行数据压缩,如果100 维的向量最后可以用10
维来表示,那么压缩率为90%。同样图像处理领域的KL 变换使用PCA 做图像压缩。但PCA
要保证降维后,还要保证数据的特性损失最小。
  PCA 技术的一大好处是对数据进行降维的处理。我们可以对新求出的“主元”向量的重要
性进行排序,根据需要取前面最重要的部分,将后面的维数省去,可以达到降维从而简化模
型或是对数据进行压缩的效果。同时最大程度的保持了原有数据的信息。
  PCA 技术的一个很大的优点是,它是完全无参数限制的。在PCA 的计算过程中完全不
需要人为的设定参数或是根据任何经验模型对计算进行干预,最后的结果只与数据相关,与
用户是独立的。
  但是,这一点同时也可以看作是缺点。如果用户对观测对象有一定的先验知识,掌握了
数据的一些特征,却无法通过参数化等方法对处理过程进行干预,可能会得不到预期的效果,
效率也不高。

posted @ 2019-03-12 18:55  chalee3  阅读(463)  评论(0编辑  收藏  举报