1 StackStorm介绍
1 StackStorm介绍 StackStorm是一个强大的自动化平台,结合DevOps和ChatOps,提供可扩展、灵活和健壮的工具链用于应用、服务和工作流的自动化能力。 StackStorm核心概念 StackStorm的工作步骤大体如下: StackStorm Sensor感应并触发事件。 Rules Engine对事件进行规则匹配,如果匹配产生任务。 StackStorm Worker执行任务,一般是调用到外部系统。 StackStorm记录审计任务执行的细节。 5.任务执行结果返回给Rules Engine进行进一步处理。 可以看出StackStorm是个以事件驱动的系统,为此抽象出一系列概念来分解事件从产生、触发、规则匹配到执行的整个生命周期事件,具体包含核心概论如下: Sensor感应器 Sensor是一系列的感应器用于接受或者监测事件,当事件发生的时候,Sensor将会通知Trigger提交事件到StackStorm。 Sensor是Python插件实现,只要实现StackStorm定义的接口,然后配置元数据YAML注册到StackStorm: class_name: "SampleSensor" entry_point: "sample_sensor.py" description: "Sample sensor that emits triggers." trigger_types: name: "event" description: "An example trigger." payload_schema: type: "object" properties: executed_at: type: "string" format: "date-time" default: "2014-07-30 05:04:24.578325" Trigger触发器 Trigger代表事件,一般事件是由外部系统产生,比如监控告警,JIRA问题更新等等,另外也有通用的事件触发器,比如定时器或者WebHook。 在StackStorm系统中,Trigger只是String类型的对象,由Sensor注册,用户可以在Sensor插件自定义新的Trigger。 Action 动作/任务 Action是事件触发后的处理方式,一般是由外部系统执行,包括: 重启服务 创建云服务 发生邮件 启动Docker容器 制作VM快照 Action可以是通用的执行方式,比如SSH,REST API调用,也能够集成Openstack、Docker/Kubernetes等系统实现。Action Runner是Action的执行环境,StackStorm的内置Action Runner: Action Runner Description local-shell-cmd This is the local runner. This runner executes a Linux command on the same host where StackStorm components are running. local-shell-script This is the local runner. Actions are implemented as scripts. They are executed on the same hosts where StackStorm components are running. remote-shell-cmd This is a remote runner. This runner executes a Linux command on one or more remote hosts provided by the user. remote-shell-script This is a remote runner. Actions are implemented as scripts. They run on one or more remote hosts provided by the user. python-script This is a Python runner. Actions are implemented as Python classes with arun method. They run locally on the same machine where StackStorm components are running. http-request HTTP client which performs HTTP requests for running HTTP actions. action-chain This runner supports executing simple linear work-flows. mistral-v2 Those runners are built on top of the Mistral OpenStack project and support executing complex work-flows. cloudslang This runner is built on top of the CloudSlang project and supports executing complex workflows. 通过Action Runner用户可以自定义Action的实现,以下是一个python-script类型的Action用于发送SMS: name: "send_sms" runner_type: "python-script" description: "This sends an SMS using twilio." enabled: true entry_point: "send_sms.py" parameters: from_number: type: "string" description: "Your twilio 'from' number in E.164 format. Example +14151234567." required: true position: 0 to_number: type: "string" description: "Recipient number in E.164 format. Example +14151234567." required: true position: 1 secret: true body: type: "string" description: "Body of the message." required: true position: 2 default: "Hello {% if system.user %} {{ system.user }} {% else %} dude {% endif %}!" Workflow 工作流 Workflow是Action集合,Workflow能够定义Action的执行顺序和条件,组合一系列Action完成复杂的任务。Workflow可以认为是广义意义上的Action。 StackStorm支持2种类型的Workflow: ActionChain:通过简单的语法定义Action链 -------------------------------------------------------------------------------- chain: - name: "c1" ref: "core.local" parameters: cmd: "echo c1" on-success: "c2" on-failure: "c4" - name: "c2" ref: "core.local" parameters: cmd: "echo "c2: parent exec is {{action_context.parent.execution_id}}."" on-success: "c3" on-failure: "c4" - name: "c3" ref: "core.local" parameters: cmd: "echo c3" on-failure: "c4" - name: "c4" ref: "core.local" parameters: cmd: "echo fail c4" default: "c1" Mistral :Openstack的工作流组件,可以同Stackstorm集成,支持复杂的工作流配置。 version: '2.0' examples.mistral-join: description: > A sample workflow that demonstrates how to join parallel branches. type: direct tasks: a: action: core.local input: cmd: "echo 'a'" on-success: - b - c - d b: action: core.local input: cmd: "echo 'b'" on-success: - e c: action: core.local input: cmd: "echo 'c'" on-success: - e d: action: core.local input: cmd: "echo 'd'" on-success: - e e: join: all action: core.local input: cmd: "echo 'e'" Rule 规则 Rule是映射Trigger到Action(或者Workflow),即当事件触发后,通过Rule定义的标准(Criteria)进行匹配,当匹配成功将执行Action(或者Workflow)。 Rule的定义格式: name: "rule_name" # required pack: "examples" # optional description: "Rule description." # optional enabled: true # required trigger: # required type: "trigger_type_ref" criteria: # optional trigger.payload_parameter_name1: type: "regex" pattern : "^value$" trigger.payload_parameter_name2: type: "iequals" pattern : "watchevent" action: # required ref: "action_ref" parameters: # optional foo: "bar" baz: "{{trigger.payload_parameter_1}}" Audit 审计 Audit是用来跟踪和记录Action的执行细节,用于查询定位: { "status": "succeeded", "start_timestamp": "2014-10-31T02:00:46.679000Z", "parameters": { "cmd": "ifconfig" }, "callback": {}, "result": { ... }, "context": { "user": "stanley" }, "action": "core.local", "id": "5452ed4e0640fd6b59e75908" } ChatOps ChatOps是一种新的DevOps方法,ChatOps是诞生于GitHub的一种基于会话驱动的协作开发方法,过去团队之间的通讯和开发操作是两层皮,导致各种不透明和低效率。ChatOps将开发工具带入开发者聊天室,通过定制的插件和脚本,一个聊天机器人能够执行聊天中输入的各种命令,实现在聊天平台上的团队协作开发自动化,把团队沟通和执行统一整合到一个可视化更高的聊天环境中,“聊着天就把事情办了”。 目前流行的ChatOps聊天机器人主要有Hubot(GitHub的bot,用CoffeeScript和Node.js开发)、Lita(用Ruby开发)和Err(用Python开发)三种,都是开源软件,而且可以整合到开发团队在工作中经常会使用一些聊天工具例如HipChat、Slack、Flowdock和Campfire等。