概要
上一章介绍了堆和二叉堆的基本概念,并通过C语言实现了二叉堆。本章是二叉堆的C++实现。
目录
1. 二叉堆的介绍
2. 二叉堆的图文解析
3. 二叉堆的C++实现(完整源码)
4. 二叉堆的C++测试程序
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3610382.html
更多内容:数据结构与算法系列 目录
(01) 二叉堆(一)之 图文解析 和 C语言的实现
(02) 二叉堆(二)之 C++的实现
(03) 二叉堆(三)之 Java的实
二叉堆的介绍
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。示意图如下:
二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将"二叉堆的第一个元素"放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),只是实现上稍微有一丁点区别。
假设"第一个元素"在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i+1);
(02) 索引为i的左孩子的索引是 (2*i+2);
(03) 索引为i的父结点的索引是 floor((i-1)/2);
假设"第一个元素"在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i);
(02) 索引为i的左孩子的索引是 (2*i+1);
(03) 索引为i的父结点的索引是 floor(i/2);
注意:本文二叉堆的实现统统都是采用"二叉堆第一个元素在数组索引为0"的方式!
二叉堆的图文解析
图文解析是以"最大堆"来进行介绍的。
1. 基本定义
template <class T> class MaxHeap{ private: T *mHeap; // 数据 int mCapacity; // 总的容量 int mSize; // 实际容量 private: // 最大堆的向下调整算法 void filterdown(int start, int end); // 最大堆的向上调整算法(从start开始向上直到0,调整堆) void filterup(int start); public: MaxHeap(); MaxHeap(int capacity); ~MaxHeap(); // 返回data在二叉堆中的索引 int getIndex(T data); // 删除最大堆中的data int remove(T data); // 将data插入到二叉堆中 int insert(T data); // 打印二叉堆 void print(); };
MaxHeap是最大堆的对应的类。它包括的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍。
2. 添加
假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:
如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。
最大堆的插入代码(C++语言)
/* * 最大堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ template <class T> void MaxHeap<T>::filterup(int start) { int c = start; // 当前节点(current)的位置 int p = (c-1)/2; // 父(parent)结点的位置 T tmp = mHeap[c]; // 当前节点(current)的大小 while(c > 0) { if(mHeap[p] >= tmp) break; else { mHeap[c] = mHeap[p]; c = p; p = (p-1)/2; } } mHeap[c] = tmp; } /* * 将data插入到二叉堆中 * * 返回值: * 0,表示成功 * -1,表示失败 */ template <class T> int MaxHeap<T>::insert(T data) { // 如果"堆"已满,则返回 if(mSize == mCapacity) return -1; mHeap[mSize] = data; // 将"数组"插在表尾 filterup(mSize); // 向上调整堆 mSize++; // 堆的实际容量+1 return 0; }
insert(data)的作用:将数据data添加到最大堆中。当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。
3. 删除
假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!
最大堆的删除代码(C++语言)
/* * 最大堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ template <class T> void MaxHeap<T>::filterdown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2*c + 1; // 左(left)孩子的位置 T tmp = mHeap[c]; // 当前(current)节点的大小 while(l <= end) { // "l"是左孩子,"l+1"是右孩子 if(l < end && mHeap[l] < mHeap[l+1]) l++; // 左右两孩子中选择较大者,即mHeap[l+1] if(tmp >= mHeap[l]) break; //调整结束 else { mHeap[c] = mHeap[l]; c = l; l = 2*l + 1; } } mHeap[c] = tmp; } /* * 删除最大堆中的data * * 返回值: * 0,成功 * -1,失败 */ template <class T> int MaxHeap<T>::remove(T data) { int index; // 如果"堆"已空,则返回-1 if(mSize == 0) return -1; // 获取data在数组中的索引 index = getIndex(data); if (index==-1) return -1; mHeap[index] = mHeap[--mSize]; // 用最后元素填补 filterdown(index, mSize-1); // 从index位置开始自上向下调整为最大堆 return 0; }
二叉堆的C++实现(完整源码)
二叉堆的实现同时包含了"最大堆"和"最小堆"。
二叉堆(最大堆)的实现文件(MaxHeap.cpp)
1 /** 2 * 二叉堆(最大堆) 3 * 4 * @author skywang 5 * @date 2014/03/07 6 */ 7 8 #include <iomanip> 9 #include <iostream> 10 using namespace std; 11 12 template <class T> 13 class MaxHeap{ 14 private: 15 T *mHeap; // 数据 16 int mCapacity; // 总的容量 17 int mSize; // 实际容量 18 19 private: 20 // 最大堆的向下调整算法 21 void filterdown(int start, int end); 22 // 最大堆的向上调整算法(从start开始向上直到0,调整堆) 23 void filterup(int start); 24 public: 25 MaxHeap(); 26 MaxHeap(int capacity); 27 ~MaxHeap(); 28 29 // 返回data在二叉堆中的索引 30 int getIndex(T data); 31 // 删除最大堆中的data 32 int remove(T data); 33 // 将data插入到二叉堆中 34 int insert(T data); 35 // 打印二叉堆 36 void print(); 37 }; 38 39 /* 40 * 构造函数 41 */ 42 template <class T> 43 MaxHeap<T>::MaxHeap() 44 { 45 new (this)MaxHeap(30); 46 } 47 48 template <class T> 49 MaxHeap<T>::MaxHeap(int capacity) 50 { 51 mSize = 0; 52 mCapacity = capacity; 53 mHeap = new T[mCapacity]; 54 } 55 /* 56 * 析构函数 57 */ 58 template <class T> 59 MaxHeap<T>::~MaxHeap() 60 { 61 mSize = 0; 62 mCapacity = 0; 63 delete[] mHeap; 64 } 65 66 /* 67 * 返回data在二叉堆中的索引 68 * 69 * 返回值: 70 * 存在 -- 返回data在数组中的索引 71 * 不存在 -- -1 72 */ 73 template <class T> 74 int MaxHeap<T>::getIndex(T data) 75 { 76 for(int i=0; i<mSize; i++) 77 if (data==mHeap[i]) 78 return i; 79 80 return -1; 81 } 82 83 /* 84 * 最大堆的向下调整算法 85 * 86 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 87 * 88 * 参数说明: 89 * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) 90 * end -- 截至范围(一般为数组中最后一个元素的索引) 91 */ 92 template <class T> 93 void MaxHeap<T>::filterdown(int start, int end) 94 { 95 int c = start; // 当前(current)节点的位置 96 int l = 2*c + 1; // 左(left)孩子的位置 97 T tmp = mHeap[c]; // 当前(current)节点的大小 98 99 while(l <= end) 100 { 101 // "l"是左孩子,"l+1"是右孩子 102 if(l < end && mHeap[l] < mHeap[l+1]) 103 l++; // 左右两孩子中选择较大者,即mHeap[l+1] 104 if(tmp >= mHeap[l]) 105 break; //调整结束 106 else 107 { 108 mHeap[c] = mHeap[l]; 109 c = l; 110 l = 2*l + 1; 111 } 112 } 113 mHeap[c] = tmp; 114 } 115 116 /* 117 * 删除最大堆中的data 118 * 119 * 返回值: 120 * 0,成功 121 * -1,失败 122 */ 123 template <class T> 124 int MaxHeap<T>::remove(T data) 125 { 126 int index; 127 // 如果"堆"已空,则返回-1 128 if(mSize == 0) 129 return -1; 130 131 // 获取data在数组中的索引 132 index = getIndex(data); 133 if (index==-1) 134 return -1; 135 136 mHeap[index] = mHeap[--mSize]; // 用最后元素填补 137 filterdown(index, mSize-1); // 从index位置开始自上向下调整为最大堆 138 139 return 0; 140 } 141 142 /* 143 * 最大堆的向上调整算法(从start开始向上直到0,调整堆) 144 * 145 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 146 * 147 * 参数说明: 148 * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) 149 */ 150 template <class T> 151 void MaxHeap<T>::filterup(int start) 152 { 153 int c = start; // 当前节点(current)的位置 154 int p = (c-1)/2; // 父(parent)结点的位置 155 T tmp = mHeap[c]; // 当前节点(current)的大小 156 157 while(c > 0) 158 { 159 if(mHeap[p] >= tmp) 160 break; 161 else 162 { 163 mHeap[c] = mHeap[p]; 164 c = p; 165 p = (p-1)/2; 166 } 167 } 168 mHeap[c] = tmp; 169 } 170 171 /* 172 * 将data插入到二叉堆中 173 * 174 * 返回值: 175 * 0,表示成功 176 * -1,表示失败 177 */ 178 template <class T> 179 int MaxHeap<T>::insert(T data) 180 { 181 // 如果"堆"已满,则返回 182 if(mSize == mCapacity) 183 return -1; 184 185 mHeap[mSize] = data; // 将"数组"插在表尾 186 filterup(mSize); // 向上调整堆 187 mSize++; // 堆的实际容量+1 188 189 return 0; 190 } 191 192 /* 193 * 打印二叉堆 194 * 195 * 返回值: 196 * 0,表示成功 197 * -1,表示失败 198 */ 199 template <class T> 200 void MaxHeap<T>::print() 201 { 202 for (int i=0; i<mSize; i++) 203 cout << mHeap[i] << " "; 204 } 205 206 int main() 207 { 208 int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80}; 209 int i, len=(sizeof(a)) / (sizeof(a[0])) ; 210 MaxHeap<int>* tree=new MaxHeap<int>(); 211 212 cout << "== 依次添加: "; 213 for(i=0; i<len; i++) 214 { 215 cout << a[i] <<" "; 216 tree->insert(a[i]); 217 } 218 219 cout << "\n== 最 大 堆: "; 220 tree->print(); 221 222 i=85; 223 tree->insert(i); 224 cout << "\n== 添加元素: " << i; 225 cout << "\n== 最 大 堆: "; 226 tree->print(); 227 228 i=90; 229 tree->remove(i); 230 cout << "\n== 删除元素: " << i; 231 cout << "\n== 最 大 堆: "; 232 tree->print(); 233 cout << endl; 234 235 return 0; 236 }
二叉堆(最小堆)的实现文件(MinHeap.cpp)
1 /** 2 * 二叉堆(最小堆) 3 * 4 * @author skywang 5 * @date 2014/03/07 6 */ 7 8 #include <iomanip> 9 #include <iostream> 10 using namespace std; 11 12 template <class T> 13 class MinHeap{ 14 private: 15 T *mHeap; // 数据 16 int mCapacity; // 总的容量 17 int mSize; // 实际容量 18 19 private: 20 // 最小堆的向下调整算法 21 void filterdown(int start, int end); 22 // 最小堆的向上调整算法(从start开始向上直到0,调整堆) 23 void filterup(int start); 24 public: 25 MinHeap(); 26 MinHeap(int capacity); 27 ~MinHeap(); 28 29 // 返回data在二叉堆中的索引 30 int getIndex(T data); 31 // 删除最小堆中的data 32 int remove(T data); 33 // 将data插入到二叉堆中 34 int insert(T data); 35 // 打印二叉堆 36 void print(); 37 }; 38 39 /* 40 * 构造函数 41 */ 42 template <class T> 43 MinHeap<T>::MinHeap() 44 { 45 new (this)MinHeap(30); 46 } 47 48 template <class T> 49 MinHeap<T>::MinHeap(int capacity) 50 { 51 mSize = 0; 52 mCapacity = capacity; 53 mHeap = new T[mCapacity]; 54 } 55 /* 56 * 析构函数 57 */ 58 template <class T> 59 MinHeap<T>::~MinHeap() 60 { 61 mSize = 0; 62 mCapacity = 0; 63 delete[] mHeap; 64 } 65 66 /* 67 * 返回data在二叉堆中的索引 68 * 69 * 返回值: 70 * 存在 -- 返回data在数组中的索引 71 * 不存在 -- -1 72 */ 73 template <class T> 74 int MinHeap<T>::getIndex(T data) 75 { 76 for(int i=0; i<mSize; i++) 77 if (data==mHeap[i]) 78 return i; 79 80 return -1; 81 } 82 83 /* 84 * 最小堆的向下调整算法 85 * 86 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 87 * 88 * 参数说明: 89 * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) 90 * end -- 截至范围(一般为数组中最后一个元素的索引) 91 */ 92 template <class T> 93 void MinHeap<T>::filterdown(int start, int end) 94 { 95 int c = start; // 当前(current)节点的位置 96 int l = 2*c + 1; // 左(left)孩子的位置 97 T tmp = mHeap[c]; // 当前(current)节点的大小 98 99 while(l <= end) 100 { 101 // "l"是左孩子,"l+1"是右孩子 102 if(l < end && mHeap[l] > mHeap[l+1]) 103 l++; // 左右两孩子中选择较小者,即mHeap[l+1] 104 if(tmp <= mHeap[l]) 105 break; //调整结束 106 else 107 { 108 mHeap[c] = mHeap[l]; 109 c = l; 110 l = 2*l + 1; 111 } 112 } 113 mHeap[c] = tmp; 114 } 115 116 /* 117 * 删除最小堆中的data 118 * 119 * 返回值: 120 * 0,成功 121 * -1,失败 122 */ 123 template <class T> 124 int MinHeap<T>::remove(T data) 125 { 126 int index; 127 // 如果"堆"已空,则返回-1 128 if(mSize == 0) 129 return -1; 130 131 // 获取data在数组中的索引 132 index = getIndex(data); 133 if (index==-1) 134 return -1; 135 136 mHeap[index] = mHeap[--mSize]; // 用最后元素填补 137 filterdown(index, mSize-1); // 从index号位置开始自上向下调整为最小堆 138 139 return 0; 140 } 141 142 /* 143 * 最小堆的向上调整算法(从start开始向上直到0,调整堆) 144 * 145 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 146 * 147 * 参数说明: 148 * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) 149 */ 150 template <class T> 151 void MinHeap<T>::filterup(int start) 152 { 153 int c = start; // 当前节点(current)的位置 154 int p = (c-1)/2; // 父(parent)结点的位置 155 T tmp = mHeap[c]; // 当前节点(current)的大小 156 157 while(c > 0) 158 { 159 if(mHeap[p] <= tmp) 160 break; 161 else 162 { 163 mHeap[c] = mHeap[p]; 164 c = p; 165 p = (p-1)/2; 166 } 167 } 168 mHeap[c] = tmp; 169 } 170 171 /* 172 * 将data插入到二叉堆中 173 * 174 * 返回值: 175 * 0,表示成功 176 * -1,表示失败 177 */ 178 template <class T> 179 int MinHeap<T>::insert(T data) 180 { 181 // 如果"堆"已满,则返回 182 if(mSize == mCapacity) 183 return -1; 184 185 mHeap[mSize] = data; // 将"数组"插在表尾 186 filterup(mSize); // 向上调整堆 187 mSize++; // 堆的实际容量+1 188 189 return 0; 190 } 191 192 /* 193 * 打印二叉堆 194 * 195 * 返回值: 196 * 0,表示成功 197 * -1,表示失败 198 */ 199 template <class T> 200 void MinHeap<T>::print() 201 { 202 for (int i=0; i<mSize; i++) 203 cout << mHeap[i] << " "; 204 } 205 206 int main() 207 { 208 int a[] = {80, 40, 30, 60, 90, 70, 10, 50, 20}; 209 int i, len=(sizeof(a)) / (sizeof(a[0])) ; 210 MinHeap<int>* tree=new MinHeap<int>(); 211 212 cout << "== 依次添加: "; 213 for(i=0; i<len; i++) 214 { 215 cout << a[i] <<" "; 216 tree->insert(a[i]); 217 } 218 219 cout << "\n== 最 小 堆: "; 220 tree->print(); 221 222 i=15; 223 tree->insert(i); 224 cout << "\n== 添加元素: " << i; 225 cout << "\n== 最 小 堆: "; 226 tree->print(); 227 228 i=10; 229 tree->remove(i); 230 cout << "\n== 删除元素: " << i; 231 cout << "\n== 最 小 堆: "; 232 tree->print(); 233 cout << endl; 234 235 return 0; 236 }
二叉堆的C++测试程序
测试程序已经包含在相应的实现文件(MaxHeap.cpp)中了,下面只列出程序运行结果。
最大堆(MaxHeap.cpp)的运行结果:
== 依次添加: 10 40 30 60 90 70 20 50 80 == 最 大 堆: 90 80 70 60 40 30 20 10 50 == 添加元素: 85 == 最 大 堆: 90 85 70 60 80 30 20 10 50 40 == 删除元素: 90 == 最 大 堆: 85 80 70 60 40 30 20 10 50
最小堆(MinHeap.cpp)的运行结果:
== 依次添加: 80 40 30 60 90 70 10 50 20 == 最 小 堆: 10 20 30 50 90 70 40 80 60 == 添加元素: 15 == 最 小 堆: 10 15 30 50 20 70 40 80 60 90 == 删除元素: 10 == 最 小 堆: 15 20 30 50 90 70 40 80 60
PS. 二叉堆是"堆排序"的理论基石。以后讲解算法时会讲解到"堆排序",理解了"二叉堆"之后,"堆排序"就很简单了。