【MindSpore易点通】如何将PyTorch源码转成MindSpore低阶APIP,并在Ascend芯片上实现单机单卡训练

文章来源:华为云论坛_云计算论坛_开发者论坛_技术论坛-华为云

1 概述
本文将介绍如何将PyTorch源码转换成MindSpore低阶API代码,并在Ascend芯片上实现单机单卡训练。
下图展示了MindSpore高阶API、低阶API和PyTorch的训练流程的区别。


与MindSpore高阶API相同,低阶API训练也需要进行:配置运行信息、数据读取和预处理、网络定义、定义损失函数和优化器。具体步骤同高阶API。
2 构造模型(低阶API)
构造模型时,首先将网络原型与损失函数封装,再将组合的模型与优化器封装,最终组合成一个可用于训练的网络。 由于训练并验证中,需计算在训练集上的精度 ,因此返回值中需包含网络的输出值。

import mindsporefrom mindspore import Modelimport mindspore.nn as nnfrom mindspore.ops import functional as Ffrom mindspore.ops import operations as P
class BuildTrainNetwork(nn.Cell):
    '''Build train network.'''
    def __init__(self, my_network, my_criterion, train_batch_size, class_num):
        super(BuildTrainNetwork, self).__init__()
        self.network = my_network
        self.criterion = my_criterion
        self.print = P.Print()
        # Initialize self.output
        self.output = mindspore.Parameter(Tensor(np.ones((train_batch_size, 
                        class_num)), mindspore.float32), requires_grad=False)

    def construct(self, input_data, label):
        output = self.network(input_data)
        # Get the network output and assign it to self.output
        self.output = output
        loss0 = self.criterion(output, label)
        return loss0
class TrainOneStepCellV2(TrainOneStepCell):
    '''Build train network.'''
    def __init__(self, network, optimizer, sens=1.0):
        super(TrainOneStepCellV2, self).__init__(network, optimizer, sens=1.0)

    def construct(self, *inputs):
        weights = self.weights
        loss = self.network(*inputs)
        # Obtain self.network from BuildTrainNetwork
        output = self.network.output
        sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
        # Get the gradient of the network parameters
        grads = self.grad(self.network, weights)(*inputs, sens)
        grads = self.grad_reducer(grads)
        # Optimize model parameters
        loss = F.depend(loss, self.optimizer(grads))
        return loss, output
    # Construct model
model_constructed = BuildTrainNetwork(net, loss_function, TRAIN_BATCH_SIZE, CLASS_NUM)
model_constructed = TrainOneStepCellV2(model_constructed, opt)


3 训练并验证(低阶API)
和PyTorch中类似,采用低阶API进行网络训练并验证。详细步骤如下:

class CorrectLabelNum(nn.Cell):

    def __init__(self):

        super(CorrectLabelNum, self).__init__()

        self.print = P.Print()

        self.argmax = mindspore.ops.Argmax(axis=1)

        self.sum = mindspore.ops.ReduceSum()



    def construct(self, output, target):

        output = self.argmax(output)

        correct = self.sum((output == target).astype(mindspore.dtype.float32))

        return correct

def train_net(model, network, criterion,

    epoch_max, train_path, val_path,

    train_batch_size, val_batch_size,

    repeat_size):

    

    """define the training method"""

    # Create dataset

    ds_train, steps_per_epoch_train = create_dataset(train_path,

        do_train=True, batch_size=train_batch_size, repeat_num=repeat_size)

    ds_val, steps_per_epoch_val = create_dataset(val_path, do_train=False,

                batch_size=val_batch_size, repeat_num=repeat_size)



    # CheckPoint CallBack definition

    config_ck = CheckpointConfig(save_checkpoint_steps=steps_per_epoch_train,

                                keep_checkpoint_max=epoch_max)

    ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10",

                                directory="./", config=config_ck)



    # Create dict to save internal callback object's parameters

    cb_params = _InternalCallbackParam()

    cb_params.train_network = model

    cb_params.epoch_num = epoch_max

    cb_params.batch_num = steps_per_epoch_train

    cb_params.cur_epoch_num = 0

    cb_params.cur_step_num = 0

    run_context = RunContext(cb_params)

    ckpoint_cb.begin(run_context)



    print("============== Starting Training ==============")

    correct_num = CorrectLabelNum()

    correct_num.set_train(False)

    

    for epoch in range(epoch_max):

        print("
Epoch:", epoch+1, "/", epoch_max)

        train_loss = 0

        train_correct = 0

        train_total = 0  

        for _, (data, gt_classes) in enumerate(ds_train):

            model.set_train()

            loss, output = model(data, gt_classes)

            train_loss += loss

            correct = correct_num(output, gt_classes)

            correct = correct.asnumpy()

            train_correct += correct.sum()

            # Update current step number

            cb_params.cur_step_num += 1

            # Check whether to save checkpoint or not

            ckpoint_cb.step_end(run_context)

            

        cb_params.cur_epoch_num += 1

        my_train_loss = train_loss/steps_per_epoch_train

        my_train_accuracy = 100*train_correct/(train_batch_size*

                                steps_per_epoch_train)

        print('Train Loss:', my_train_loss)

        print('Train Accuracy:', my_train_accuracy, '%')

        

        print('evaluating {}/{} ...'.format(epoch + 1, epoch_max))

        val_loss = 0

        val_correct = 0

        for _, (data, gt_classes) in enumerate(ds_val):

            network.set_train(False)

            output = network(data)

            loss = criterion(output, gt_classes)

            val_loss += loss

            correct = correct_num(output, gt_classes)

            correct = correct.asnumpy()

            val_correct += correct.sum()



        my_val_loss = val_loss/steps_per_epoch_val

        my_val_accuracy = 100*val_correct/(val_batch_size*steps_per_epoch_val)

        print('Validation Loss:', my_val_loss)

        print('Validation Accuracy:', my_val_accuracy, '%')



    print("--------- trains out ---------")


4 运行脚本
启动命令:
python MindSpore_1P_low_API.py --data_path=xxx --epoch_num=xxx
在开发环境的Terminal中运行脚本,可以看到网络输出结果:


注:由于高阶API采用数据下沉模式进行训练,而低阶API不支持数据下沉训练,因此高阶API比低阶API训练速度快。
性能对比:低阶API: 2000 imgs/sec ;高阶API: 2200 imgs/sec
详细代码请前往MindSpore论坛进行下载:华为云论坛_云计算论坛_开发者论坛_技术论坛-华为云

posted @ 2022-08-30 11:07  Skytier  阅读(57)  评论(0编辑  收藏  举报