【课程作业经验】基于MindSpore的梯度下降实验
基于mindspore的梯度下降实验
基于机器学习实践课程完成的相关使用mindspore深度学习框架完成的任务,写一些分享心得。
数据准备
使用numpy生成数据,之后使用mindspore的tensor进行转换:
x = np.array([55,71,68,87,101,87,75,78,93,73])
y = np.array([91,101,87,109,129,98,95,101,104,93])
x = Tensor(x.astype(np.float32))
y = Tensor(y.astype(np.float32))
解析解
def ols_algebra(x, y):
'''
解析解
'''
n = len(x)
w1 = (n*sum(x*y) - sum(x)*sum(y)) / (n*sum(x*x) - sum(x)*sum(x))
w0 = (sum(x*x)*sum(y) - sum(x)*sum(x*y)) / (n*sum(x*x) - sum(x)*sum(x))
return w1,w0
梯度下降解
def ols_gradient_descent(x,y,lr,num_iter):
'''
梯度下降解
'''
w1 = 0
w0 = 0
for i in range(num_iter):
y_hat = (w1 * x)+ w0
w1_gradient = -2 * sum(x*(y-y_hat))
w0_gradient = -2*sum(y-y_hat)
w1 -=lr * w1_gradient
w0 -= lr* w0_gradient
return w1,w0
画图进行比较
def plot_pic(w1,w0,w1_,w0_,x,y):
'''
画图
'''
fig, axes = plt.subplots(1,2, figsize=(15,5))
w1 = w1.asnumpy()
w0 = w0.asnumpy()
w1_ = w1_.asnumpy()
w0_ = w0_.asnumpy()
x = x.asnumpy()
y = y.asnumpy()
axes[0].scatter(x,y)
axes[0].plot(np.array([50,110]), np.array([50,110])*w1 + w0, 'r')
axes[0].set_title("OLS")
axes[1].scatter(x,y)
axes[1].plot(np.array([50,110]), np.array([50,110])*w1_ + w0_, 'r')
axes[1].set_title("Gradient descent")
plt.show()
结果
可以看到最终梯度下降得到了和解析解极其相似的结果:
完整代码
'''
使用mindspore的Tensor进行修改,除画图外中间变量类型为mindspore的tensor类型
'''
import numpy as np
import matplotlib.pyplot as plt
from mindspore import Tensor
def ols_algebra(x, y):
'''
解析解
'''
n = len(x)
w1 = (n*sum(x*y) - sum(x)*sum(y)) / (n*sum(x*x) - sum(x)*sum(x))
w0 = (sum(x*x)*sum(y) - sum(x)*sum(x*y)) / (n*sum(x*x) - sum(x)*sum(x))
return w1,w0
def ols_gradient_descent(x,y,lr,num_iter):
'''
梯度下降解
'''
w1 = 0
w0 = 0
for i in range(num_iter):
y_hat = (w1 * x)+ w0
w1_gradient = -2 * sum(x*(y-y_hat))
w0_gradient = -2*sum(y-y_hat)
w1 -=lr * w1_gradient
w0 -= lr* w0_gradient
return w1,w0
def plot_pic(w1,w0,w1_,w0_,x,y):
'''
画图
'''
fig, axes = plt.subplots(1,2, figsize=(15,5))
w1 = w1.asnumpy()
w0 = w0.asnumpy()
w1_ = w1_.asnumpy()
w0_ = w0_.asnumpy()
x = x.asnumpy()
y = y.asnumpy()
axes[0].scatter(x,y)
axes[0].plot(np.array([50,110]), np.array([50,110])*w1 + w0, 'r')
axes[0].set_title("OLS")
axes[1].scatter(x,y)
axes[1].plot(np.array([50,110]), np.array([50,110])*w1_ + w0_, 'r')
axes[1].set_title("Gradient descent")
plt.show()
if __name__ == "__main__":
x = np.array([55,71,68,87,101,87,75,78,93,73])
y = np.array([91,101,87,109,129,98,95,101,104,93])
x = Tensor(x.astype(np.float32))
y = Tensor(y.astype(np.float32))
w1,w0 = ols_algebra(x,y)
print(w1)
print(w0)
w1_,w0_ = ols_gradient_descent(x,y,lr = 0.00001, num_iter = 500)
print(w1_)
print(w0_)
plot_pic(w1,w0,w1_,w0_,x,y)
w1_,w0_ = ols_gradient_descent(x,y,lr = 0.00001, num_iter = 120000)
print(w1_)
print(w0_)
plot_pic(w1,w0,w1_,w0_,x,y)