MindSpore报错 Select GPU kernel op * fail! Incompatible data type

1 报错描述

1.1 系统环境

Hardware Environment(Ascend/GPU/CPU): GPU
Software Environment:
– MindSpore version (source or binary): 1.5.2
– Python version (e.g., Python 3.7.5): 3.7.6
– OS platform and distribution (e.g., Linux Ubuntu 16.04): Ubuntu 4.15.0-74-generic
– GCC/Compiler version (if compiled from source):

1.2 基本信息

1.2.1 脚本

训练脚本是通过构建BatchNorm单算子网络,对Tensor做归一化处理。脚本如下:

 01 class Net(nn.Cell):
 02     def __init__(self):
 03         super(Net, self).__init__()
 04         self.batch_norm = ops.BatchNorm()
 05     def construct(self,input_x, scale, bias, mean, variance):
 06         output = self.batch_norm(input_x, scale, bias, mean, variance)
 07         return output
 08
 09 net = Net()
 10 input_x = Tensor(np.ones([2, 2]), mindspore.float16)
 11 scale = Tensor(np.ones([2]), mindspore.float16)
 12 bias = Tensor(np.ones([2]), mindspore.float16)
 13 bias = Tensor(np.ones([2]), mindspore.float16)
 14 mean = Tensor(np.ones([2]), mindspore.float16)
 15 variance = Tensor(np.ones([2]), mindspore.float16)
 16 output = net(input_x, scale, bias, mean, variance)
 17 print(output)

1.2.2 报错

这里报错信息如下:

Traceback (most recent call last):
  File "116945.py", line 22, in <module>
    output = net(input_x, scale, bias, mean, variance)
  File "/data2/llj/mindspores/r1.5/build/package/mindspore/nn/cell.py", line 407, in __call__
    out = self.compile_and_run(*inputs)
  File "/data2/llj/mindspores/r1.5/build/package/mindspore/nn/cell.py", line 734, in compile_and_run
    self.compile(*inputs)
  File "/data2/llj/mindspores/r1.5/build/package/mindspore/nn/cell.py", line 721, in compile
    _cell_graph_executor.compile(self, *inputs, phase=self.phase, auto_parallel_mode=self._auto_parallel_mode)
  File "/data2/llj/mindspores/r1.5/build/package/mindspore/common/api.py", line 551, in compile
    result = self._graph_executor.compile(obj, args_list, phase, use_vm, self.queue_name)
TypeError: mindspore/ccsrc/runtime/device/gpu/kernel_info_setter.cc:355 PrintUnsupportedTypeException] Select GPU kernel op[BatchNorm] fail! Incompatible data type!
The supported data types are in[float32 float32 float32 float32 float32], out[float32 float32 float32 float32 float32]; in[float16 float32 float32 float32 float32], out[float16 float32 float32 float32 float32]; , but get in [float16 float16 float16 float16 float16 ] out [float16 float16 float16 float16 float16 ]

原因分析

我们看报错信息,在TypeError中,写到Select GPU kernel op[BatchNorm] fail! Incompatible data type!

The supported data types are in[float32 float32 float32 float32 float32], out[float32 float32 float32 float32 float32]; in[float16 float32 float32 float32 float32], out[float16 float32 float32 float32 float32]; , but get in [float16 float16 float16 float16 float16 ] out [float16 float16 float16 float16 float16 ],大概意思是GPU环境下, 不支持当前输入的数据类型组合, 并说明了支持的数据类型组合是怎样的:全部为float32或者input_x为float16, 其余为float32。检查脚本的输入发现全部为float16类型, 因此报错。

2 解决方法

基于上面已知的原因,很容易做出如下修改:

 01 class Net(nn.Cell):
 02     def __init__(self):
 03         super(Net, self).__init__()
 04         self.batch_norm = ops.BatchNorm()
 05     def construct(self,input_x, scale, bias, mean, variance):
 06         output = self.batch_norm(input_x, scale, bias, mean, variance)
 07         return output
 08 
 09 net = Net()
 10 input_x = Tensor(np.ones([2, 2]), mindspore.float16)
 11 scale = Tensor(np.ones([2]), mindspore.float32)
 12 bias = Tensor(np.ones([2]), mindspore.float32)
 13 mean = Tensor(np.ones([2]), mindspore.float32)
 14 variance = Tensor(np.ones([2]), mindspore.float32)
 15 
 16 output = net(input_x, scale, bias, mean, variance)
 17 print(output)

此时执行成功,输出如下:

output: (Tensor(shape=[2, 2], dtype=Float16, value=
[[ 1.0000e+00,  1.0000e+00],
 [ 1.0000e+00,  1.0000e+00]]), Tensor(shape=[2], dtype=Float32, value= [ 0.00000000e+00,  0.00000000e+00]), Tensor(shape=[2], dtype=Float32, value= [ 0.00000000e+00,  0.00000000e+00]), Tensor(shape=[2], dtype=Float32, value= [ 0.00000000e+00,  0.00000000e+00]), Tensor(shape=[2], dtype=Float32, value= [ 0.00000000e+00,  0.00000000e+00]))

3 总结

定位报错问题的步骤:

1、找到报错的用户代码行: 16 output = net(input_x, scale, bias, mean, variance);

2、 根据日志报错信息中的关键字,缩小分析问题的范围:The supported data types are in[float32 float32 float32 float32 float32], out[float32 float32 float32 float32 float32]; in[float16 float32 float32 float32 float32], out[float16 float32 float32 float32 float32]; , but get in [float16 float16 float16 float16 float16 ] out [float16 float16 float16 float16 float16 ]

3、需要重点关注变量定义、初始化的正确性。

4 参考文档

4.1 BatchNorm算子API接口

posted @ 2022-07-17 17:21  Skytier  阅读(54)  评论(0编辑  收藏  举报