最长串那点事儿(lis,lcs,lcis)

最长串那点事儿pascal

(最长上升子序列,最长公共子串,最长公共子序列,最长公共上升子序列)的优化与另类状态表示思路

 

 

DP中很经典的一类,又分这几小类

1.       最长(不)上升/下降

2.       最长公共子序列/

3.       最长公共上升子序列

算法复杂度,一般就是朴素的n^2n^3,其实很多优化,最朴素的不再叙述:

一:NlongN 最长不降系列

F是维护一个单调的序列,f[i]不为0的元素中的最大的i(即队列长度)

Program sky;

Var

  i,j,m,n:longint;

function find(l,r:longint):longint;{f中二分查找第一个大/小于(等于)a[i]的数覆盖}

  begin

       if l=r then exit(l);

     if f[mid]…a[i] then exit(find(l,mid)) else exit(find(mid+1,r));

  end;

begin

for i:=1 to n do

   if a[i]>f[tot] then begin inc(tot); f[tot]:=a[i]; end

  else f[find(1,tot)]:=a[I,j];

end.

二:最长公共子串

 01矩阵可以直观表示某一位是否匹配,改变存储方式,让矩阵中的每一位转移它左上角元素的状态

If a[i]=b[j] then  F[I,j]:=f[i-1,j-1]+1;否则为0,朴素二维循环

三:最长公共上升子序列

1)朴素n^3f[i,j]表示状态,意思是到a的前i位,b的前j位的最长值,当更新f时用第三维枚举)

program sky;

begin

  readln(n);  for i:=1 to n do read(a[i]);{第一个序列}

  readln(m);  for i:=1 to m do read(b[i]);{第二个序列}

  for i:=1 to n do

    for j:=1 to m do

      begin

        if a[i]<>b[j] then f[i,j]:=f[i-1,j] else{分情况,当不等时不会更新ans,所以直接转移下来供下面用}

          begin

            f[i,j]:=1;

            for k:=0 to j-1 do if a[i]>b[k] then f[i,j]:=max(f[i,j],f[i-1,k]+1);

          end;

      end;

  for i:=1 to m do f[n,m]:=max(f[n,m],f[n,i]);{最优解不一定在最后,还有一种写法就是f[i,j]转移f[i-1,j],f[i,j-1]的最大值}

  writeln(f[n,m]);

end.

2)优化至n^2(用k记录位置,压缩维度的两种方法之一,【另一种是改变状态表示】)

for i:=1 to n do

    begin

      maxa:=0;

      for j:=1 to m do{n^3的不同,因为它会判断f[j]>maxa这一状态转移,所以不能f[j]:=max(f[j],f[j-1]),也就是不能把左边的状态转移过来}

        begin{空间上也采用压缩,这行状态之和前一行有关,所以直接覆盖}

          if (a[i]>b[j]) and (f[j]>maxa) then maxa:=f[j];{注意if语句中的else,用else的话,if就不能随便嵌套了···}

          if (a[i]=b[j]) then f[j]:=max(f[j],maxa+1);

        end;

    end;

  for i:=1 to m do f[m]:=max(f[m],f[i]);

  writeln(f[m]);

四:特殊最长公共子序列的nlogn算法(若两序列都没有重复元素,且元素不过大,把两序列各看做一个集合时,两集合相等,这时用一种新的状态表示方法)

这种新的状态表示方法就是记录第二个串中元素

11D/1D

利用答案f数组的单调性,即后面的状态一定大于等于或小于等于前面的,ans成一个单调变化如下

111111111111111111111111111111111111111111111111111

111111111111222222222222222222222222222222222222222

111111111111222222222222222222222233333333333333333

不可能出现

111111111111111111111113333333333333333333322222222

这时存储答案的就不是f的值而是下标了,值表示左右端点

F[k].lf[k].r分别表示ansk的区间左右端点

代码和nlogn的最长上升完全一样,思想变了,变成找一个已经确定的位置被覆盖的最大值,并用它的位置更新可以覆盖它的最大的一个数的下一个数

2)一个新的定义状态的方法,代码不变,不写了。

3)根据题目性质转化成熟悉的问题

可以把元素在第二个序列中的位置按照第一个序列的顺序记录下来,求最长上升

Ep2  1  3  4  5

1  3  2  4  5

V  3  1  2  4  5

v求一次最长上升用nlogn可以求解

posted @   SunSky...  阅读(446)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示