【图像算法】图像特征:三个图像显著性区域特征提取方法
-------------------------------------------------------------------------------------------------------------------------
SkySeraph Aug 11st 2011 HQU
Email:zgzhaobo@gmail.com QQ:452728574
Latest Modified Date:Aug 11st 2011 HQU
-------------------------------------------------------------------------------------------------------------------------
图像算法系列: http://skyseraph.com/2011/08/27/CV/图像算法专题/
》第一种方法:
原理:Frequency-tuned Salient Region Detection.CVPR.2009
定义:
简述:
三步,滤波+颜色空间转换+计算SaliencyMap(见源码)
效果:
待测试图(后同)
结果1:(原作者代码测试结果)
结果2:(我用OpenCV改写的代码测试结果)
结果3:(我的改进测试(空间选择不同))
源码(matlab):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | %--------------------------------------------------------- % Read image and blur it with a 3x3 or 5x5 Gaussian filter %--------------------------------------------------------- img = imread( 'input_image.jpg' );%Provide input image path gfrgb = imfilter(img, fspecial( 'gaussian' , 3, 3), 'symmetric' , 'conv' ); %--------------------------------------------------------- % Perform sRGB to CIE Lab color space conversion ( using D65) %--------------------------------------------------------- cform = makecform( 'srgb2lab' , 'whitepoint' , whitepoint( 'd65' )); lab = applycform(gfrgb,cform); %--------------------------------------------------------- % Compute Lab average values (note that in the paper this % average is found from the unblurred original image, but % the results are quite similar) %--------------------------------------------------------- l = double (lab(:,:,1)); lm = mean(mean(l)); a = double (lab(:,:,2)); am = mean(mean(a)); b = double (lab(:,:,3)); bm = mean(mean(b)); %--------------------------------------------------------- % Finally compute the saliency map and display it. %--------------------------------------------------------- sm = (l-lm).^2 + (a-am).^2 + (b-bm).^2; imshow(sm,[]); %-------------------------------------------------------- |
------------------------------------------------------------------------------------------------------------------------------
》第二种方法:
原理:
Y. Zhai and M. Shah. Visual attention detection in video sequences using spatiotemporal cues. In ACM Multimedia, pages 815–824. ACM,2006.
定义:
效果:
------------------------------------------------------------------------------------------------------------------------------
》第三种方法:
原理:http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spectralresidual.html
源码(matlab):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | clear clc %% Read image from file inImg = im2double(rgb2gray(imread( 'yourImage.jpg' ))); inImg = imresize(inImg, 64/size(inImg, 2)); %% Spectral Residual myFFT = fft2(inImg); myLogAmplitude = log ( abs (myFFT)); myPhase = angle(myFFT); mySpectralResidual = myLogAmplitude - imfilter(myLogAmplitude, fspecial( 'average' , 3), 'replicate' ); saliencyMap = abs (ifft2( exp (mySpectralResidual + i*myPhase))).^2; %% After Effect saliencyMap = mat2gray(imfilter(saliencyMap, fspecial( 'gaussian' , [10, 10], 2.5))); imshow(saliencyMap); |
效果:
SYNC (www.skyseraph.com)
------------------------------------------------------------------------------------------------------------------------------
Author: SKySeraph
Email/GTalk: zgzhaobo@gmail.com QQ:452728574
From: http://www.cnblogs.com/skyseraph/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
-----------------------------------------------------------------------------------------------------------------------------
作者:skyseraph
出处:http://www.cnblogs.com/skyseraph/
更多精彩请直接访问SkySeraph个人站点:http://skyseraph.com//
Email/GTalk: zgzhaobo@gmail.com
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?