深度学习笔记

Python中有很多软件包可用于构建深度神经网络。

最直观的一个是scikit-neuralnetwork软件包,sknn.mlp模块即来于此

 


 

正则化可以提高神经网路的泛化,避免过度拟合。

对代价函数要进行改写,添加正则项。

添加衰减参数来惩罚较大的权重来实现

回归例子

  1 from sklearn import datasets
  2 
  3 boston = datasets.load_boston()
  4 x, y = boston.data, boston.target
  5 print(x, y)
  6 from sklearn import preprocessing
  7 
  8 x_MinMax = preprocessing.MinMaxScaler()
  9 y_MinMax = preprocessing.MinMaxScaler()
 10 import numpy as np
 11 
 12 y = np.array(y).reshape((len(y), 1))
 13 x = x_MinMax.fit_transform(x)
 14 y = y_MinMax.fit_transform(y)
 15 x.mean(axis=0)  # x的均值置为0
 16 print(y_MinMax.scale_)
 17 
 18 import random
 19 from sklearn.model_selection import train_test_split
 20 
 21 np.random.seed(2016)
 22 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
 23 print(len(x_train))
 24 
 25 from sknn.mlp import Regressor, Layer
 26 
 27 # ====================================================================
 28 # ====================================================================
 29 fit1 = Regressor(
 30     layers=[
 31         Layer('Sigmoid', units=6),
 32         Layer('Sigmoid', units=14),
 33         Layer('Linear')],
 34     learning_rate=0.02,  # 学习速率设置,要适中
 35     random_state=2016,
 36     n_iter=100)
 37 
 38 print('fitting model right now')
 39 fit1.fit(x_train, y_train)
 40 
 41 pred1_train = fit1.predict(x_train)
 42 from sklearn.metrics import mean_squared_error
 43 
 44 mse_1 = mean_squared_error(pred1_train, y_train)
 45 
 46 print('Sigmoid train error: ', mse_1)
 47 
 48 # ====================================================================
 49 # ====================================================================
 50 # 换成ReLU激活函数
 51 
 52 fit2 = Regressor(
 53     layers=[
 54         Layer('Rectifier', units=6),
 55         Layer('Rectifier', units=14),
 56         Layer('Linear')],
 57     learning_rate=0.02,  # 学习速率设置,要适中
 58     random_state=2016,
 59     n_iter=100)
 60 
 61 print('fitting model right now')
 62 fit2.fit(x_train, y_train)
 63 
 64 pred2_train = fit2.predict(x_train)
 65 from sklearn.metrics import mean_squared_error
 66 
 67 mse_2 = mean_squared_error(pred2_train, y_train)
 68 
 69 print('ReLU train error: ', mse_2)
 70 
 71 # ====================================================================
 72 # ====================================================================
 73 # 换成ReLU激活函数,添加正则化,减少过度拟合
 74 
 75 fit3 = Regressor(
 76     layers=[
 77         Layer('Rectifier', units=6),
 78         Layer('Rectifier', units=14),
 79         Layer('Linear')],
 80     learning_rate=0.02,  # 学习速率设置,要适中
 81     random_state=2016,
 82     regularize='L2',
 83     weight_decay=0.001,
 84     n_iter=100)
 85 
 86 print('fitting model right now')
 87 fit3.fit(x_train, y_train)
 88 
 89 pred3_train = fit3.predict(x_train)
 90 from sklearn.metrics import mean_squared_error
 91 
 92 mse_3 = mean_squared_error(pred3_train, y_train)
 93 
 94 print('train error: ', mse_3)
 95 
 96 # 查看在测试样本上的表现
 97 pred3_test = fit3.predict(x_test)
 98 mse3_test = mean_squared_error(pred3_test, y_test)
 99 print('test error: ', mse3_test)
100 for i in range(len(y_test)):
101     print(y_test[i], pred3_test[i])
102 
103 plt.scatter(y_test, pred3_test)
104 
105 x = np.linspace(0, 1)
106 y = x
107 plt.plot(x, y, color='red', label='ideal case')
108 plt.xlabel("observed value")
109 plt.ylabel("predicted value")
110 # plt.title("PyPlot First Example")
111 # plt.ylim(-1.2,1.2)
112 plt.legend()
113 
114 plt.show()

RESULT:

fitting model right now
Sigmoid train error: 0.0110050767582
fitting model right now
ReLU train error: 0.00583105752773
fitting model right now
train error: 0.00738282398554
test error: 0.00919026590683
[ 0.39333333] [ 0.31815418]
[ 0.26222222] [ 0.29489496]
[ 0.41111111] [ 0.48599465]
[ 0.28] [ 0.24576025]
[ 0.38666667] [ 0.32436206]
[ 0.21777778] [ 0.2463605]
[ 0.5] [ 0.35651292]
[ 0.38666667] [ 0.39062989]
[ 0.36] [ 0.30109043]

.......

 

测试集上性能的评估:

打印出相关性和R平方

from scipy.stats.stats import pearsonr

correl = pearsonr(pred3_test, y_test)
print('Test correlation is ', correl[0])
print('Test R^2 is ', correl[0] * correl[0])

Test correlation is [ 0.9073899]
Test R^2 is [ 0.82335643]

 

 

 

手写字母的分类

rmsdrop算法:对每个更新向量分量使用不同的学习速率

 

算法 正确率    
       
       
       
       
       
posted @ 2018-10-14 16:23  sky_lover  阅读(834)  评论(0编辑  收藏  举报