龙格库塔求解常微分方程
fun.m添加微分方程,通过RK递推下一时刻的函数值
主函数如下:
n=90;
x=zeros(1,n+1);
y=zeros(1,n+1);
x(1)=0;
y(1) =1; %初值
h=0.1;
for i =1:n
x(i+1) = x(i) + h;
y(i+1) = RK(@fun,x(i),y(i),h);
end
plot(x,y,'-o')
fun.m如下:y' = 2*(1-y/20)*y -x;
function dy= fun(x,y)
dy = 2*(1-y/20)*y -x;
RK.m如下:
function y = RK(F_xy,x,y,h)
k_1 = F_xy(x,y);
k_2 = F_xy(x+0.5*h,y+0.5*h*k_1);
k_3 = F_xy((x+0.5*h),(y+0.5*h*k_2));
k_4 = F_xy((x+h),(y+k_3*h));
y = y + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h;
结果如下: