[CF241E]Flights
[CF241E]Flights
题目大意:
给一张\(n(n\le1000)\)个点\(m(m\le5000)\)条边的DAG,确定每条边的边权\(w_i(w_i\in\{1,2\})\),使得所有从\(1\)到\(n\)的路径拥有相同的长度。
思路:
首先用BFS求出所有与\(1\)到\(n\)路径有关的点构成的子图。
这样,\(1\)到子图上每个点的长度都是确定的,即终点相同的路径拥有相同的长度。有\(d_i\)表示点\(1\)到点\(i\)的距离,则对于边\(u\to v\),有\(1\le d_v-d_u\le2\)。这样我们就可以得到一个差分约束系统,使用SPFA求最长路即可。
源代码:
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1001,M=5000;
struct Edge {
int u,v;
};
Edge edge[M];
std::vector<int> e[N];
std::vector<Edge> h[N];
int n,m,vis[N],dis[N];
bool f[N],g[N],inq[N];
std::queue<int> q;
inline void bfs1() {
for(register int i=0;i<m;i++) {
e[edge[i].u].push_back(edge[i].v);
}
q.push(1);
f[1]=true;
while(!q.empty()) {
const int &x=q.front();
for(auto &y:e[x]) {
if(!f[y]) {
q.push(y);
f[y]=true;
}
}
q.pop();
}
for(register int i=1;i<=n;i++) {
e[i].clear();
}
}
inline void bfs2() {
for(register int i=0;i<m;i++) {
e[edge[i].v].push_back(edge[i].u);
}
q.push(n);
g[n]=true;
while(!q.empty()) {
const int &x=q.front();
for(auto &y:e[x]) {
if(!g[y]) {
q.push(y);
g[y]=true;
}
}
q.pop();
}
for(register int i=1;i<=n;i++) {
e[i].clear();
}
}
inline void spfa() {
q.push(1);
while(!q.empty()) {
const int &x=q.front();
for(auto &j:h[x]) {
const int &y=j.u,&w=j.v;
if(dis[x]+w>dis[y]) {
dis[y]=dis[x]+w;
if(!inq[y]) {
inq[y]=true;
q.push(y);
if(++vis[y]>n) {
throw 0;
}
}
}
}
q.pop();
inq[x]=false;
}
}
int main() {
n=getint(),m=getint();
for(register int i=0;i<m;i++) {
const int u=getint(),v=getint();
edge[i]=(Edge){u,v};
}
bfs1();
bfs2();
for(register int i=0;i<m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(f[u]&&g[u]&&f[v]&&g[v]) {
h[u].push_back((Edge){v,1});
h[v].push_back((Edge){u,-2});
}
}
try {
spfa();
} catch(...) {
puts("No");
return 0;
}
puts("Yes");
for(register int i=0;i<m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(f[u]&&g[u]&&f[v]&&g[v]) {
printf("%d\n",dis[v]-dis[u]);
} else {
puts("1");
}
}
return 0;
}