[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列
[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列
题目大意:
给你一个长度为\(n(n\le10^5)\)的整数序列,其中有一些数已经模糊不清了,现在请你任意确定这些整数的值,使得最长上升子序列最长。求最长长度。
思路:
一定存在一种最优方案使得不确定的都选上(考虑新选上一个不确定的数,最多会使一个已确定的数失效),因此令\(a_i=a_i-cnt\)(\(cnt\)为之前不确定的数的个数),求LIS后加上\(cnt\)即可。
源代码:
#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) neg|=ch=='-';
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return neg?-x:x;
}
inline char getupper() {
register char ch;
while(!isupper(ch=getchar()));
return ch;
}
const int N=1e5+1;
int a[N],tmp[N];
class FenwickTree {
private:
int val[N];
int lowbit(const int &x) const {
return x&-x;
}
public:
void modify(int p,const int &x) {
for(;p<=tmp[0];p+=lowbit(p)) {
val[p]=std::max(val[p],x);
}
}
int query(int p) const {
int ret=0;
for(;p;p-=lowbit(p)) {
ret=std::max(ret,val[p]);
}
return ret;
}
};
FenwickTree bit;
int main() {
const int n=getint();
int cnt=0;
for(register int i=1;i<=n;i++) {
if(getupper()=='K') {
a[i]=tmp[i-cnt]=getint()-cnt;
} else {
a[i]=INT_MAX;
cnt++;
}
}
std::sort(&tmp[1],&tmp[n-cnt]+1);
tmp[0]=std::unique(&tmp[1],&tmp[n-cnt]+1)-&tmp[1];
for(register int i=1;i<=n;i++) {
if(a[i]==INT_MAX) continue;
a[i]=std::lower_bound(&tmp[1],&tmp[tmp[0]]+1,a[i])-tmp;
bit.modify(a[i],bit.query(a[i]-1)+1);
}
printf("%d\n",bit.query(tmp[0])+cnt);
return 0;
}