NOI.AC NOIP模拟赛 第一场 补记

NOI.AC NOIP模拟赛 第一场 补记

candy

题目大意:

有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元。每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗糖果的愉悦度为\(A_i\),而第二家商店中的第\(i\)颗糖果的愉悦度为\(B_i\)

在每家商店买的糖果会被打包到一个袋子中(可以在一家商店什么都不买,此时认为这家商店的袋子为空)。因为这两个袋子外观是一样的,所以会从两个袋子中随机选择一个,然后吃光里面的糖果。定义一种买糖果的方案的愉悦度为:吃到的糖果的愉悦度之和的最小可能值。

求买糖果的愉悦度与买糖果的花费之差的最大值。

思路:

显然对于一家店,购买相同数量的糖果,一定选择愉悦度尽量高的更优。

因此将\(A_i\)\(B_i\)从大到小排序,求前缀和。答案就是\(\max\{\min(A_i,B_j)-(i+j)W\}\)。枚举每一个\(A_i,B_j\)作为\(\min\),然后另一个数就可以通过二分求出来。

时间复杂度\(\mathcal O(n\log n)\)

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
	register char ch;
	while(!isdigit(ch=getchar()));
	register int x=ch^'0';
	while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
	return x;
}
typedef long long int64;
const int N=1e5+1;
int64 a[N],b[N];
int main() {
	const int n=getint(),m=getint();
	for(register int i=1;i<=n;i++) a[i]=getint();
	for(register int i=1;i<=n;i++) b[i]=getint();
	std::reverse(&a[1],&a[n]+1);
	std::reverse(&b[1],&b[n]+1);
	for(register int i=1;i<=n;i++) a[i]+=a[i-1];
	for(register int i=1;i<=n;i++) b[i]+=b[i-1];
	int64 ans=0;
	for(register int i=0;i<=n;i++) {
		const int j=std::lower_bound(&b[0],&b[n]+1,a[i])-b;
		if(j<=n) ans=std::max(ans,a[i]-(int64)(i+j)*m);
	}
	for(register int i=0;i<=n;i++) {
		const int j=std::lower_bound(&a[0],&a[n]+1,b[i])-a;
		if(j<=n) ans=std::max(ans,b[i]-(int64)(i+j)*m);
	}
	printf("%lld\n",ans);
	return 0;
}

sort

来源:

Ufa SATU + Bucharest U Contest J. Reverse Sort

题目大意:

一个长度为\(n(n\le50000)\)的序列\(A\)。每次操作可以将一个区间翻转,定义翻转区间\([l,r]\)的代价为\(r-l+1\)。要通过翻转将这个序列排序,请你构造出代价小小于\(2\times10^7\)的一种方案。

思路:

\(A_i\in\{0,1\}\)时,用归并排序的思想,每次归并时将左子区间的后缀\(1\)与右子区间的前缀\(0\)交换即可。

而没有\(A_i\in\{0,1\}\)的条件时,我们可以利用快速排序的思想,每次从区间内随机选取一个数\(x\)作为基准,\(\le x\)的数作为\(0\)\(>x\)的数作为\(1\)。然后内层套用上述归并排序的算法。

源代码:

#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
inline int getint() {
	register char ch;
	while(!isdigit(ch=getchar()));
	register int x=ch^'0';
	while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
	return x;
}
const int N=5e4+1;
int a[N];
inline bool check(const int &b,const int &e) {
	for(register int i=b;i<e;i++) {
		if(a[i]>a[i+1]) return false;
	}
	return true;
}
void solve(const int &b,const int &e,const int &x) {
	if(b==e) return;
	const int mid=(b+e)>>1;
	solve(b,mid,x);
	solve(mid+1,e,x);
	int p=b,q=e;
	while(p<=mid&&a[p]<=x) p++;
	while(q>mid&&a[q]>x) q--;
	if(p<=mid&&q>mid) {
		printf("%d %d\n",p,q);
		std::reverse(&a[p],&a[q]+1);
	}
}
void solve(const int &b,const int &e) {
	if(b>=e) return;
	if(check(b,e)) return;
	const int x=a[b+rand()%(e-b+1)];
	solve(b,e,x);
	for(register int i=b;i<=e;i++) {
		if(a[i]>x) {
			solve(b,i-1);
			solve(i,e);
			return;
		}
	}
	solve(b,e);
}
int main() {
	srand(998244353);
	const int n=getint();
	for(register int i=1;i<=n;i++) a[i]=getint();
	solve(1,n);
	puts("-1 -1");
	return 0;
}
posted @ 2018-09-21 13:28  skylee03  阅读(396)  评论(0编辑  收藏  举报