[POI2015]Myjnie

[POI2015]Myjnie

题目大意:

\(n(n\le50)\)家洗车店从左往右排成一排,每家店都有一个正整数价格\(d_i\)

\(m(m\le4000)\)个人要来消费,第\(i\)个人会选择\(a_i\sim b_i\)这些店中最便宜的一个进行一次消费。但是如果这个最便宜的价格大于\(c_i\),那么这个人就不洗车了。

请给每家店指定一个价格,使得所有人花的钱的总和最大。

思路:

\(c\)离散化后进行区间DP。

\(f_{i,j,k}\)表示区间\([i,j]\)最小值为\(k\)的最大收益,\(g_{i,j,k}\)表示\(f\)的后缀\(\max\)\(h_{i,j}\)表示当前区间内经过\(i\)点,费用限制\(\ge j\)的人数。

\(k\)对应的离散化前原数为\(t_k\),枚举\(k\)出现的位置\(x\),转移方程为:

\[f_{i,j,k}=\max\{g_{i,x-1,k}+g_{x+1,j,k}+h_{x,k}\times t_k\}。 \]

由于要构造一种方案,在DP时记录转移即可。

时间复杂度\(\mathcal O(n^3m)\)

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
	register char ch;
	while(!isdigit(ch=getchar()));
	register int x=ch^'0';
	while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
	return x;
}
const int N=51,M=4001;
int a[M],b[M],c[M],d[N],tmp[M],f[N][N][M],g[N][N][M],p[N][N][M],last[N][N][M],h[N][M];
void dfs(const int &i,const int &j,const int &k) {
	const int &p=::p[i][j][k];
	if(i!=p) dfs(i,p-1,last[i][j][k]);
	if(j!=p) dfs(p+1,j,last[i][j][k]);
	d[p]=tmp[last[i][j][k]];
}
int main() {
	const int n=getint(),m=getint();
	for(register int i=1;i<=m;i++) {
		a[i]=getint();
		b[i]=getint();
		tmp[++tmp[0]]=c[i]=getint();
	}
	std::sort(&tmp[1],&tmp[tmp[0]]+1);
	tmp[0]=std::unique(&tmp[1],&tmp[tmp[0]]+1)-&tmp[1];
	for(register int i=1;i<=m;i++) {
		c[i]=std::lower_bound(&tmp[1],&tmp[tmp[0]]+1,c[i])-tmp;
	}
	for(register int i=n;i>=1;i--) {
		for(register int j=i;j<=n;j++) {
			for(register int k=i;k<=j;k++) {
				std::fill(&h[k][1],&h[k][tmp[0]]+1,0);
			}
			for(register int k=1;k<=m;k++) {
				if(i<=a[k]&&b[k]<=j) {
					for(register int i=a[k];i<=b[k];i++) h[i][c[k]]++;
				}
			}
			for(register int k=i;k<=j;k++) {
				for(register int i=tmp[0];i>1;i--) h[k][i-1]+=h[k][i];
			}
			for(register int k=tmp[0];k>=1;k--) {
				for(register int x=i;x<=j;x++) {
					const int t=g[i][x-1][k]+g[x+1][j][k]+h[x][k]*tmp[k];
					if(t>=f[i][j][k]) {
						f[i][j][k]=t;
						p[i][j][k]=x;
					}
				}
				g[i][j][k]=f[i][j][k];
				last[i][j][k]=k;
				if(k!=tmp[0]&&g[i][j][k+1]>g[i][j][k]) {
					g[i][j][k]=g[i][j][k+1];
					p[i][j][k]=p[i][j][k+1];
					last[i][j][k]=last[i][j][k+1];
				}
			}
		}
	}
	dfs(1,n,1);
	printf("%d\n",g[1][n][1]);
	for(register int i=1;i<=n;i++) {
		printf("%d%c",d[i]," \n"[i==n]);
	}
	return 0;
}
posted @ 2018-09-02 20:52  skylee03  阅读(386)  评论(0编辑  收藏  举报