[BZOJ5361]/[HDU6291]对称数
[BZOJ5361]/[HDU6291]对称数
题目大意:
一个\(n(n\le2\times10^5)\)个结点的树,每个结点有一个权值\(a_i(a_i\le2\times10^5)\),\(m(m\le2\times10^5)\)次询问,每次询问\((u,v)\)路径上最小的出现偶数次的数。
思路:
对每个权值随机一个unsigned long long
作为一个新的权值,树上主席树维护区间异或和。
询问时在主席树上二分即可。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef unsigned long long uint64;
const int N=2e5+1,logN=40;
int a[N],v[N],anc[N][logN],dep[N],mex;
uint64 w[N],hsum[N];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
inline int lg2(const float &x) {
return ((unsigned&)x>>23&255)-127;
}
class FotileTree {
#define mid ((b+e)>>1)
private:
struct Node {
uint64 val;
int left,right;
};
Node node[N*logN];
int sz,new_node(const int &p) {
node[++sz]=node[p];
return sz;
}
public:
void reset() {
sz=0;
}
int root[N];
void insert(int &p,const int &b,const int &e,const int &x) {
p=new_node(p);
node[p].val^=w[v[x]];
if(b==e) return;
if(x<=mid) insert(node[p].left,b,mid,x);
if(x>mid) insert(node[p].right,mid+1,e,x);
}
int query(const int &p,const int &q,const int &r,const int &s,const int &b,const int &e) const {
if((node[p].val^node[q].val^node[r].val^node[s].val)==(hsum[e]^hsum[b-1])) return mex;
if(b==e) return v[b];
const int tmp=query(node[p].left,node[q].left,node[r].left,node[s].left,b,mid);
if(tmp==mex) return query(node[p].right,node[q].right,node[r].right,node[s].right,mid+1,e);
return tmp;
}
#undef mid
};
FotileTree t;
void dfs(const int &x,const int &par) {
anc[x][0]=par;
dep[x]=dep[par]+1;
for(register int i=1;i<=lg2(dep[x]);i++) {
anc[x][i]=anc[anc[x][i-1]][i-1];
}
const int p=std::lower_bound(&v[1],&v[v[0]]+1,a[x])-v;
t.insert(t.root[x]=t.root[par],1,v[0],p);
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x);
}
}
inline int get_lca(int x,int y) {
if(dep[x]<dep[y]) std::swap(x,y);
for(register int i=lg2(dep[x]-dep[y]);i>=0;i--) {
if(dep[anc[x][i]]>=dep[y]) x=anc[x][i];
}
if(x==y) return x;
for(register int i=lg2(dep[x]);i>=0;i--) {
if(anc[x][i]!=anc[y][i]) {
x=anc[x][i];
y=anc[y][i];
}
}
return anc[x][0];
}
inline int query(const int &x,const int &y) {
const int lca=get_lca(x,y);
return std::min(t.query(t.root[x],t.root[y],t.root[lca],t.root[anc[lca][0]],1,v[0]),mex);
}
int main() {
srand(19961993);
for(register int T=getint();T;T--) {
memset(anc,0,sizeof anc);
const int n=getint(),m=getint();
for(register int i=1;i<=n;i++) {
v[i]=a[i]=getint();
while(w[a[i]]==0) {
w[a[i]]=(uint64)rand()*rand()*rand();
}
}
std::sort(&v[1],&v[n]+1);
v[0]=std::unique(&v[1],&v[n]+1)-v-1;
for(register int i=mex=1;i<=v[0];i++) {
hsum[i]=hsum[i-1]^w[v[i]];
if(v[i]==mex) mex++;
}
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
dfs(1,0);
for(register int i=0;i<m;i++) {
printf("%d\n",query(getint(),getint()));
}
t.reset();
for(register int i=1;i<=n;i++) {
e[i].clear();
}
}
return 0;
}