[NOI2018]归程

[NOI2018]归程

题目大意:

一个\(n\)个点\(m\)条边的无向连通图,每条边有两个属性\(l_i,a_i\)\(q\)次询问,每次询问从点\(v\)出发,可以不耗费任何代价走过一段从\(v\)开始的任何一个满足\(\min\{a_i\}>p\)的路径,然后从结束的地方\(u\)走到结点\(1\),代价为\(1\sim u\)\(l_i\)之和。求最小代价。强制在线。

数据范围:

思路:

对于测试点\(1\),什么都不用做就能够拿到\(5\)分。

对于测试点\(2\sim6\),由于海拔相等,因此要么直接走到\(1\),要么完全不用走。使用Dijkstra求最短路\(dis\)即可。

对于测试点\(7\sim11\),使用树上主席树维护对应\(a_i\)的范围内深度最大的结点。令\(u\)表示\(1\sim v\)间深度最大的\(a_i\le p\)的点,则答案就是\(1\sim u\)\(l_i\)之和。

对于测试点\(12\sim14\),将所有的边和询问按照权值从大到小排序,Kruskal维护连通性。答案就是同一连通块内\(dis\)的最小值。

对于测试点\(15\sim16\),每次重新做一遍Kruskal即可。

对于测试点\(17\sim20\),将测试点\(12\sim14\)中的并查集可持久化即可。

时间复杂度\(\mathcal O(n\log^2n)\)

标算是一个时间复杂度\(\mathcal O(n\log n)\)的Kruskal重构树解法。

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
#include<algorithm>
#include<functional>
#include<ext/pb_ds/priority_queue.hpp>
inline int getint() {
	register char ch;
	while(!isdigit(ch=getchar()));
	register int x=ch^'0';
	while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
	return x;
}
const int N=2e5+1,S=1e9,M=4e5+1,Q=4e5;
struct Edge {
	int to,l,a;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const int &l,const int &a) {
	e[u].push_back((Edge){v,l,a});
	e[v].push_back((Edge){u,l,a});
}
int n,m,q,k,s;
void reset() {
	for(register int i=1;i<=n;i++) e[i].clear();
}
namespace subtask_same_elevation {
	int elevation,dis[N];
	struct Vertex {
		int w,id;
		bool operator > (const Vertex &rhs) const {
			return w>rhs.w;
		}
	};
	void dijkstra() {
		static __gnu_pbds::priority_queue<Vertex,std::greater<Vertex> > q;
		static __gnu_pbds::priority_queue<Vertex,std::greater<Vertex> >::point_iterator p[N];
		for(register int i=1;i<=n;i++) {
			p[i]=q.push((Vertex){dis[i]=i==1?0:INT_MAX,i});
		}
		while(!q.empty()) {
			const int x=q.top().id;
			q.pop();
			for(register unsigned i=0;i<e[x].size();i++) {
				const int &y=e[x][i].to,&w=e[x][i].l;
				if(dis[x]+w<dis[y]) {
					q.modify(p[y],(Vertex){dis[y]=dis[x]+w,y});
				}
			}
		}
	}
};
namespace subtask_tree {
	int dep[N],sum[N];
	class SegmentTree {
		#define mid ((b+e)>>1)
		private:
			static const int SIZE=N*40;
			struct Node {
				int val,left,right;
			};
			Node node[SIZE];
			int sz,new_node(const int &p) {
				node[++sz]=node[p];
				return sz;
			}
		public:
			int root[N];
			void reset() {
				sz=0;
			}
			void insert(int &p,const int &b,const int &e,const int &x,const int &y) {
				p=new_node(p);
				if(dep[y]>=dep[node[p].val]) {
					node[p].val=y;
				}
				if(b==e) return;
				if(x<=mid) insert(node[p].left,b,mid,x,y);
				if(x>mid) insert(node[p].right,mid+1,e,x,y);
			}
			int query(const int &p,const int &b,const int &e,const int &x) {
				if(e==x) return node[p].val;
				if(x<=mid) {
					return query(node[p].left,b,mid,x);
				} else {
					const int u=query(node[p].left,b,mid,mid);
					const int v=query(node[p].right,mid+1,e,x);
					return dep[u]>dep[v]?u:v;
				}
			}
		#undef mid
	};
	SegmentTree t;
	void dfs(const int &x,const int &par) {
		for(unsigned i=0;i<e[x].size();i++) {
			const int &y=e[x][i].to,&l=e[x][i].l,&a=e[x][i].a;
			if(y==par) continue;
			sum[y]=sum[x]+l;
			dep[y]=dep[x]+1;
			t.insert(t.root[y]=t.root[x],0,S,a,y);
			dfs(y,x);
		}
	}
};
namespace subtask_offline {
	using namespace subtask_same_elevation;
	struct Edge2 {
		int u,v,w;
		bool operator > (const Edge2 &rhs) const {
			return w>rhs.w;
		}
	};
	struct Query {
		int v,p,id;
		bool operator > (const Query &rhs) const {
			return p>rhs.p;
		}
	};
	int ans[Q];
	Edge2 edge[M];
	Query que[Q];
	class DisjointSet {
		private:
			int anc[N],val[N];
			int find(const int &x) {
				return x==anc[x]?x:anc[x]=find(anc[x]);
			}
		public:
			void init() {
				for(register int i=1;i<=n;i++) {
					anc[i]=i;
					val[i]=dis[i];
				}
			}
			void merge(const int &x,const int &y) {
				const int p=find(x),q=find(y);
				val[q]=std::min(val[q],val[p]);
				anc[p]=q;
			}
			bool same(const int &x,const int &y) {
				return find(x)==find(y);
			}
			int query(const int &x) {
				return val[find(x)];
			}
	};
	DisjointSet djs;
};
namespace subtask_n2 {
	using namespace subtask_same_elevation;
	using namespace subtask_offline;
};
namespace subtask_default {
	using namespace subtask_same_elevation;
	using namespace subtask_offline;
	struct PersistentDisjointSet {
		#define mid ((b+e)>>1)
		static const int SIZE=N*40;
		struct Node {
			int val,left,right,size,dist;
		};
		Node node[SIZE];
		int sz,new_node(const int &p) {
			node[++sz]=node[p];
			return sz;
		}
		int getpos(const int &p,const int &b,const int &e,const int &x) {
			if(b==e) return p;
			return x<=mid?getpos(node[p].left,b,mid,x):getpos(node[p].right,mid+1,e,x);
		}
		bool same(const int &x,const int &y) {
			return node[x].val==node[y].val;
		}
		int root[M];
		void reset() {
			root[0]=0;
			sz=0;
		}
		void build(int &p,const int &b,const int &e) {
			p=new_node(p);
			if(b==e) {
				node[p].val=b;
				node[p].size=1;
				node[p].dist=dis[b];
				return;
			}
			build(node[p].left,b,mid);
			build(node[p].right,mid+1,e);
		}
		int find(const int &p,const int &b,const int &e,const int &x) {
			const int q=getpos(p,b,e,x);
			return x==node[q].val?q:find(p,b,e,node[q].val);
		}
		int merge2(int &p,const int &b,const int &e,const int &x,const int &y,const int &q) {
			p=new_node(p);
			if(b==e) {
				node[p].val=y;
				return p;
			}
			if(x<=mid) return merge2(node[p].left,b,mid,x,y,q);
			if(x>mid) return merge2(node[p].right,mid+1,e,x,y,q);
			return 0;
		}
		void merge3(int &p,const int &b,const int &e,const int &x,const int &y,const int &q) {
			p=new_node(p);
			if(b==e) {
				node[p].size+=node[q].size;
				node[p].dist=std::min(node[p].dist,node[q].dist);
				return;
			}
			if(x<=mid) merge3(node[p].left,b,mid,x,y,q);
			if(x>mid) merge3(node[p].right,mid+1,e,x,y,q);
		}
		void merge(int &p,const int &b,const int &e,int x,int y) {
			x=find(p,b,e,x),y=find(p,b,e,y);
			if(same(x,y)) return;
			if(node[x].size>node[y].size) std::swap(x,y);
			const int q=merge2(p,b,e,node[x].val,node[y].val,y);
			merge3(p,b,e,node[y].val,node[x].val,q);
		}
		#undef mid
	};
	PersistentDisjointSet pdjs;
	int hash[M];
};
int main() {
	//freopen("return.in","r",stdin);
	//freopen("return.out","w",stdout);
	for(register int T=getint();T;T--) {
		n=getint(),m=getint();
		bool is_tree=m==n-1;
		bool same_elevation=true;
		for(register int i=0;i<m;i++) {
			const int u=getint(),v=getint(),l=getint(),a=getint();
			subtask_offline::edge[i]=(subtask_offline::Edge2){u,v,a};
			if(i!=0&&subtask_same_elevation::elevation!=a) same_elevation=false;
			add_edge(u,v,l,subtask_same_elevation::elevation=a);
		}
		q=getint(),k=getint(),s=getint();
		bool offline=k==0;
		if(q==0) {
			//point 1
			goto Next;
		}
		if(same_elevation&&offline) {
			//point 2~6
			using namespace subtask_same_elevation;
			dijkstra();
			for(register int i=0;i<q;i++) {
				const int v=getint(),p=getint();
				printf("%d\n",p<elevation?0:dis[v]);
			}
			goto Next;
		}
		if(is_tree) {
			//point 7~11
			using namespace subtask_tree;
			dfs(1,0);
			for(register int i=0,ans=0;i<q;i++) {
				const int v=(getint()+k*ans-1)%n+1;
				const int p=(getint()+k*ans)%(s+1);
				printf("%d\n",ans=sum[t.query(t.root[v],0,S,p)]);
			}
			t.reset();
			goto Next;
		}
		if(offline) {
			//point 12~14
			using namespace subtask_offline;
			dijkstra();
			std::sort(&edge[0],&edge[m],std::greater<Edge2>());
			for(register int i=0;i<q;i++) {
				const int v=getint(),p=getint();
				que[i]=(Query){v,p,i};
			}
			std::sort(&que[0],&que[q],std::greater<Query>());
			djs.init();
			for(register int i=0,j=0;j<q;j++) {
				for(;edge[i].w>que[j].p;i++) {
					const int &u=edge[i].u,&v=edge[i].v;
					if(djs.same(u,v)) continue;
					djs.merge(u,v);
				}
				ans[que[j].id]=djs.query(que[j].v);
			}
			for(register int i=0;i<q;i++) {
				printf("%d\n",ans[i]);
			}
			goto Next;
		}
		if(n<=1500&&m<=4000&&q<=2000) {
			//point 15~16
			using namespace subtask_n2;
			dijkstra();
			for(register int i=0,last=0;i<q;i++) {
				const int v=(getint()+k*last-1)%n+1;
				const int p=(getint()+k*last)%(s+1);
				djs.init();
				for(register int i=0;i<m;i++) {
					if(edge[i].w<=p) continue;
					const int &u=edge[i].u,&v=edge[i].v;
					if(djs.same(u,v)) continue;
					djs.merge(u,v);
				}
				printf("%d\n",last=djs.query(v));
			}
			goto Next;
		}
		//point 17~20
		using namespace subtask_default;
		dijkstra();
		pdjs.build(pdjs.root[0],1,n);
		std::sort(&edge[0],&edge[m],std::greater<Edge2>());
		for(register int i=0;i<m;i++) {
			hash[i+1]=edge[i].w;
			const int &u=edge[i].u,&v=edge[i].v;
			pdjs.merge(pdjs.root[i+1]=pdjs.root[i],1,n,u,v);
		}
		for(register int i=0,last=0;i<q;i++) {
			const int v=(getint()+k*last-1)%n+1;
			const int p=(getint()+k*last)%(s+1);
			const int pos=std::lower_bound(&hash[1],&hash[m]+1,p,std::greater<int>())-&hash[1];
			printf("%d\n",last=pdjs.node[pdjs.find(pdjs.root[pos],1,n,v)].dist);
		}
		pdjs.reset();
		Next:
			reset();
	}
	return 0;
}
posted @ 2018-07-18 19:54  skylee03  阅读(428)  评论(0编辑  收藏  举报