[TC14860]SquadConstructor2

[TC14860]SquadConstructor2

题目大意:

\(n(n<2^m,m\le8)\)个互不相等的数\(v_i\)。从中选取\(k(k\le8)\)个数\(b_i\),求\(\sum_{i=0}^m(\sum_{j=1}^k[b_j\wedge 2^i=2^i])^2\)的最大值。

思路:

一个显然的动态规划\(f[i][s]\)表示选择了\(i\)个数,是否能使得状态为\(s\)。其中状态\(s\)表示\(0\sim m-1\)中每一个二进制位出现次数。显然可以做到\(\mathcal O(n\cdot k\cdot9^m)\)。使用bitset优化,做到\(\mathcal O(\frac{n\cdot k\cdot9^m}\omega)\)

源代码:

#include<vector>
#include<bitset>
constexpr int M=8,N=1<<M,K=9;
constexpr int pwr[]={1,9,81,729,6561,59049,531441,4782969,43046721};
class SquadConstructor2 {
	private:
		int b[N];
		std::bitset<pwr[M]> f[K];
		int sqr(const int &x) const {
			return x*x;
		}
	public:
		int teamget(const int &m,const int &k,std::vector<int> v) {
			const int n=v.size();
			for(register int i=0;i<n;i++) {
				for(register int j=0;j<m;j++) {
					if(v[i]&(1<<j)) b[i]+=pwr[j];
				}
			}
			f[0][0]=1;
			for(register int i=0;i<n;i++) {
				for(register int j=k;j;j--) {
					f[j]|=f[j-1]<<b[i];
				}
			}
			int ans=0;
			for(register int s=0;s<pwr[m];s++) {
				if(!f[k][s]) continue;
				int tmp=0;
				for(register int i=0;i<m;i++) {
					tmp+=sqr(s/pwr[i]%9);
				}
				ans=std::max(ans,tmp);
			}
			return ans;
		}
};
posted @ 2018-06-11 10:40  skylee03  阅读(106)  评论(0编辑  收藏  举报