07 2017 档案
摘要:强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com。也可以加我的微博: @leftnoteasy
阅读全文
摘要:链接1 链接2(原文地址) PCA的数学原理(转) PCA的数学原理(转) PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章
阅读全文
摘要:Needleman-Wunsch(In 1970) 算法是用于全局的比对。Smith-Waterman算法是1981年Smith和Waterman提出的一种用来寻找并比较具有局部相似性区域的动态规划算法,很多后来的算法都是在该算法的基础上发展的。这是一种两序列局部比对算法,把两条未知的序列进行排列,
阅读全文