连接

Andronov-Hopf bifurcation

地址:http://www.scholarpedia.org/article/Andronov-Hopf_bifurcation

 

Andronov-Hopf bifurcation is the birth of a limit cycle from an equilibrium in dynamical systems generated by ODEs, when the equilibrium changes stability via a pair of purely imaginary eigenvalues. The bifurcation can be supercritical or subcritical, resulting in stable or unstable (within an invariant two-dimensional manifold) limit cycle, respectively.

Definition

Consider an autonomous system of ordinary differential equations (ODEs)

    

depending on a parameter αR , where f is smooth.

  • Suppose that for all sufficiently small |α| the system has a family of equilibria x0(α) .
  • Further assume that its Jacobian matrix A(α)=fx(x0(α),α) has one pair of complex eigenvalues
λ1,2(α)=μ(α)±iω(α)

that becomes purely imaginary when α=0 , i.e., μ(0)=0 and ω(0)=ω0>0 . Then, generically, as α passes through α=0 , the equilibrium changes stability and a unique limit cycle bifurcates from it. This bifurcation is characterized by a single bifurcation condition Re λ1,2=0 (has codimension one) and appears generically in one-parameter families of smooth ODEs.

 

 

posted @ 2017-08-24 10:33  朱群喜_QQ囍_海疯习习  阅读(374)  评论(0编辑  收藏  举报
Map