第一个Linux驱动-流水灯【转】

转自:http://www.xuebuyuan.com/1856562.html

水平有限,描述不当之处请指出,转载请注明出处http://blog.csdn.net/vanbreaker/article/details/7711695            

       本节介绍如何利用板载的Led和Linux的内核定时器实现一个简单的流水灯的驱动,所使用的开发板是TQ2440,内核版本2.6.30.4。

        程序比较简单,也没涉及到什么机制,直接上代码了!关于定时器的使用模板可以参考<<Linux设备驱动开发详解>>.

    

驱动程序:

#include<linux/module.h>
#include<linux/init.h>
#include<linux/types.h>
#include<linux/fs.h>
#include<linux/mm.h>
#include<linux/cdev.h>
#include<linux/slab.h>
#include<linux/timer.h>
#include<linux/jiffies.h>
#include<asm/io.h>
#include<asm/uaccess.h>
#include<mach/regs-gpio.h>


#define LED_MAJOR 244


#define LED_ON  0
#define LED_OFF 1

#define LED1_PIN S3C2410_GPB5
#define LED2_PIN S3C2410_GPB6
#define LED3_PIN S3C2410_GPB7
#define LED4_PIN S3C2410_GPB8 

static unsigned long led_major = LED_MAJOR;

struct led_dev 
{
	struct cdev cdev;
	struct timer_list s_timer;
	atomic_t led_no;       //LED编号
	atomic_t sec_counter;  //秒计时数
};

struct led_dev *led_devp;



void led_control(int led_no)
{
	switch(led_no)
	{
		case 1:s3c2410_gpio_setpin(LED1_PIN,LED_ON);
		       s3c2410_gpio_setpin(LED2_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED3_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED4_PIN,LED_OFF);
		       break;
		case 2:s3c2410_gpio_setpin(LED1_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED2_PIN,LED_ON);
		       s3c2410_gpio_setpin(LED3_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED4_PIN,LED_OFF);
		       break;
		case 3:s3c2410_gpio_setpin(LED1_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED2_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED3_PIN,LED_ON);
		       s3c2410_gpio_setpin(LED4_PIN,LED_OFF);
		       break;
		case 4:s3c2410_gpio_setpin(LED1_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED2_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED3_PIN,LED_OFF);
		       s3c2410_gpio_setpin(LED4_PIN,LED_ON);
		       break;
		default:break;
		
	}
}


//定时器处理函数
static void sec_timer_handler(unsigned long arg)
{
	int num;

	mod_timer(&led_devp->s_timer,jiffies+HZ);
	
	num = atomic_read(&led_devp->led_no);
	if(num == 4)
	{
		atomic_set(&led_devp->led_no,1);
	}	
	else
	{
		atomic_inc(&led_devp->led_no);
	}
	
	num = atomic_read(&led_devp->led_no);
	led_control(num);

	atomic_inc(&led_devp->sec_counter);
	num = atomic_read(&led_devp->sec_counter);
	printk(KERN_INFO "sec_count:%d\n",num);
		
}


static int led_open(struct inode *inode,struct file *filp)
{
	struct timer_list *timer;

	timer = &led_devp->s_timer;
	init_timer(timer);
	timer->function = sec_timer_handler;
	timer->expires = jiffies+HZ;		  //计时频率为HZ

	add_timer(timer);
	atomic_set(&led_devp->sec_counter,0);   
	atomic_set(&led_devp->led_no,0);

	return 0;

}



static int led_release(struct inode *inode, struct file *filp)
{
	del_timer(&led_devp->s_timer);
	return 0;	
}



static ssize_t led_read(struct file *filp, char __user *buf, 
			size_t size, loff_t *ppos)
{
	int count,led_no;
	int result;

	count = atomic_read(&led_devp->sec_counter);
	led_no = atomic_read(&led_devp->led_no);
	result = (count<<3)+led_no;

	if(put_user(result,(int*)buf))
	{
		return -EFAULT;
	}	
	else
	{
		return sizeof(int);
	}
}




static const struct file_operations led_fops =
{
	.owner = THIS_MODULE,
	.read = led_read,
	.open = led_open,
	.release = led_release,
};




static void led_setup_cdev(struct led_dev *dev, int index)
{
	int err,devno = MKDEV(led_major,index);
	cdev_init(&dev->cdev,&led_fops);
	dev->cdev.owner = THIS_MODULE;
	err = cdev_add(&dev->cdev,devno,1);

	if(err)
	{
		printk(KERN_NOTICE "Error %d adding %d\n",err,index);
	}
}




static int led_init(void)
{
	int result;

	dev_t devno = MKDEV(led_major,0); //获取设备号

	/*注册设备*/
	if(led_major)
		result = register_chrdev_region(devno,1,"led");
	else
	{
		result = alloc_chrdev_region(&devno,0,1,"led");
		led_major = MAJOR(devno);
	}

	if(result<0)
	{
		printk("register failed!");
		return result;
	}

	
	led_devp =(struct led_dev*)kmalloc(sizeof(struct led_dev),GFP_KERNEL);
	
	if(!led_devp)
	{
		result = -ENOMEM;
		unregister_chrdev_region(devno,1);
	}
	memset(led_devp, 0 ,sizeof(struct led_dev));

	led_setup_cdev(led_devp,0);

	/*配置IO口*/
	s3c2410_gpio_cfgpin(LED1_PIN,S3C2410_GPIO_OUTPUT);
	s3c2410_gpio_cfgpin(LED2_PIN,S3C2410_GPIO_OUTPUT);
	s3c2410_gpio_cfgpin(LED3_PIN,S3C2410_GPIO_OUTPUT);
	s3c2410_gpio_cfgpin(LED4_PIN,S3C2410_GPIO_OUTPUT);

         /*初始化IO电平*/
	s3c2410_gpio_setpin(LED1_PIN,LED_OFF);
	s3c2410_gpio_setpin(LED2_PIN,LED_OFF);
	s3c2410_gpio_setpin(LED3_PIN,LED_OFF);
	s3c2410_gpio_setpin(LED4_PIN,LED_OFF);

	return 0;
}



static void led_exit(void)
{
	cdev_del(&led_devp->cdev);
	kfree(led_devp);
	unregister_chrdev_region(MKDEV(led_major,0),1);
}



MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vanbreaker");

module_init(led_init);
module_exit(led_exit);

在该例程中,由于控制LED亮灭的部分放在了定时器处理函数中,因此led_read函数没有实际作用,这样的话应用程序就简单一些;另一种选择是将该控制部分放在应用程序中完成,不过还得添加一个iocntl函数,这是我之前的做法。

 

控制s3c2440的IO口可以使用内核中已经提供的操作函数,在arch\arm\plat-s3c24xx\Gpio.c中,需要包含头文件<asm/io.h>相关的IO口定义在arch\arm\s3c2410\include\mach\Regs-gpio.h中,需要包含头文件<mach/regs-gpio.h>

可以分析下s3c2410_gpio_setpin()这个函数

void s3c2410_gpio_setpin(unsigned int pin, unsigned int to)
{
	void __iomem *base = S3C24XX_GPIO_BASE(pin);//获取该pin所在的gpio组的虚拟地址
	unsigned long offs = S3C2410_GPIO_OFFSET(pin);//计算该pin在gpio组内的偏移
	unsigned long flags;
	unsigned long dat;

	local_irq_save(flags);

	dat = __raw_readl(base + 0x04);//通过加上0x04定位到数据寄存器,将该组gpio的数据读取出来
	dat &= ~(1 << offs);	   //相应位清零
	dat |= to << offs;              //相应位置位
	__raw_writel(dat, base + 0x04); //写回数据

	local_irq_restore(flags);
}

 

#define S3C24XX_GPIO_BASE(x)  S3C2410_GPIO_BASE(x)

 

#define S3C2410_GPIO_BASE(pin)   ((((pin) & ~31) >> 1) + S3C24XX_VA_GPIO)

S3C2410_GPIO_BASE(pin)用来计算pin所在的GPIO组的虚拟地址,S3C24XX_VA_GPIO是IO的虚拟基址,我们分析一下 ((pin)&~31)>>1是什么意思。首先我们得了解传入的参数究竟是什么形式的,以S3C2410_GPA0的定义为例:

#define S3C2410_GPA0         S3C2410_GPIONO(S3C2410_GPIO_BANKA, 0)
#define S3C2410_GPIONO(bank,offset) ((bank) + (offset))

#define S3C2410_GPIO_BANKA   (32*0)
#define S3C2410_GPIO_BANKB   (32*1)
#define S3C2410_GPIO_BANKC   (32*2)
#define S3C2410_GPIO_BANKD   (32*3)
#define S3C2410_GPIO_BANKE   (32*4)
#define S3C2410_GPIO_BANKF   (32*5)
#define S3C2410_GPIO_BANKG   (32*6)
#define S3C2410_GPIO_BANKH   (32*7)

可以看到bank都有32位,因此传入的pin参数实际就是离起始bank的位偏移,S3C2410_GPA0为0,S3C2410_GPB0为32.而每个GPIO组都有4个寄存器,一个GPIO组所占的内存大小就有4*32/8=32/2=32>>1=16个字节大小,由此可见 (pin)&~31是先将低位屏蔽,计算出pin所在的gpio组,再将结果右移一位就是计算字节的偏移,如GPA的偏移为0,GPB的偏移为0X10,GPC的偏移为0X20……最后将偏移加上IO的虚拟基址就得到了该组IO口的虚拟地址了。

 

计算组内偏移很简单:

#define S3C2410_GPIO_OFFSET(pin) ((pin) & 31)

 

应用测试程序:

#include<stdio.h>
#include<unistd.h>
#include<fcntl.h>
#include<string.h>
#include<stdlib.h>




int main()
{
	int fd;

	fd = open("/dev/led_timer",O_RDWR);

	if(fd != -1)
	{
		printf("open /dev/led_timer\n");
		while(1);
	}
	else
	{
		printf("cannot open /dev/led_timer!");
	}
}

将编译好的模块和应用程序移到开发板上进行加载和执行,即可以看到流水灯的效果

posted @ 2016-02-18 17:52  Sky&Zhang  阅读(664)  评论(0编辑  收藏  举报