kfence源码分析【转】

转自:https://www.cnblogs.com/pengdonglin137/p/16342898.html

参考

作者

pengdonglin137@163.com

内核版本

linux-5.14

实现分析

Kfence (Kernel Electric Fence) 是 Linux 内核引入的一种低开销的内存错误检测机制,因为是低开销的所以它可以在运行的生产环境中开启,同样由于是低开销所以它的功能相比较 KASAN 会偏弱。

  • Kfence是一种基于采样的低开销的内存安全错误检测技术。可以检测UAF非法释放OOB三种内存错误,目前支持x86和ARM64,它在slab和slub内存分配器中添加了hook函数。

  • Kfence的设计理念:如果有足够长的总的运行时间,kfence可以在非生产环境的测试程序无法充分测试的代码路径上检测到bug。可以通过大范围部署kfence来快速达到足够长的总运行时间

  • Kfence管理的每个object都分别存放在一个单独的内存页的左边或者右边,跟这个内存页紧邻的左右两侧的内存页被成为保护页,这些保护页的内存属性被设置成保护状态(PTE页表项的P位),如果访问这些保护页,就会导致缺页异常,而kfence在缺页异常中会解析和报告发生的错误。
    image

  • 从kfence内存池中分配object是基于一个采样间隔,这个间隔可以通过内核启动参数kfence.sample_interval来修改。当经过了一个采样间隔的时间,下一次从slab或slub中分配的object将会来自kfence内存池。然后需要再经过一个采样间隔,slab或者slub才能从kfence内存池中分配一个object。

  • 由于采用了static key机制,可以省去判断逻辑,所以不管是否开启kfence,从slub或者slab的的快速路径分配内存时的性能都不会受到影响。

  • Kfence内存池的大小是固定的,如果Kfence内存池被用光了,那么就不能再从kfence内存池分配内存了。默认的内核配置是kfence内存池大小为2MB,可以分配到255的object,每个object对应一个内存页。

初始化

kfence内存池框图:
image

其中data区域是用来分配的,fence区域是用来检测内存越界的。metadata数组的元素跟data区域一一对应,用于描述data区域的信息。

  start_kernel
  -> mm_init
  -> kfence_alloc_pool
  // 将memblock分配器中的空闲页面释放给伙伴分配器,之前被memblock分配出去还没有释放的内存也就不会出现在伙伴系统里,虽然如此,这部分内存还是有
  // 与之对应的page结构体
  -> mem_init
  -> kfence_init
  • kfence_alloc_pool [mm\kfence\core.c]
  void __init kfence_alloc_pool(void)
  {
  // 如果采样间隔为0的话,不初始化kfence。需要通过内核配置选项CONFIG_KFENCE_SAMPLE_INTERVAL或者内核启动参数kfence.sample_interval来设置
  if (!kfence_sample_interval)
  return;
   
  // 申请kfence pool内存池,大小为:((CONFIG_KFENCE_NUM_OBJECTS + 1) * 2 * PAGE_SIZE),对齐到PAGE_SIZE
  // CONFIG_KFENCE_NUM_OBJECTS最大为65535,最小为1.
  __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
  }

此时伙伴分配器不能使用,所以给kfence的内存在伙伴系统之外,不属于伙伴系统管理,所以也就不用担心被伙伴系统分配出去。

  • kfence_init
  void __init kfence_init(void)
  {
  /* 如果采样间隔为0,那么会关闭kfence */
  if (!kfence_sample_interval)
  return;
   
  // 初始化kfence内存池
  kfence_init_pool();
   
  // 表示kfence可以工作了
  WRITE_ONCE(kfence_enabled, true);
  /*
  用于周期性开启kfence内存池的任务,这里delay时间为0,表示立刻开启,见下文toggle_allocation_gate
  */
  queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
   
  pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
  CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
  (void *)(__kfence_pool + KFENCE_POOL_SIZE));
  }
  • kfence_init_pool [kfence_init -> kfence_init_pool]
  static bool __init kfence_init_pool(void)
  {
  unsigned long addr = (unsigned long)__kfence_pool;
  struct page *pages;
  int i;
   
  /* 对于x86架构,会检查__kfence_pool是否映射到物理地址了 */
  arch_kfence_init_pool();
   
  /* 获取将kfence内存池首地址对应的page结构体 */
  pages = virt_to_page(addr);
   
  for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
  if (!i || (i % 2)) // 跳过第0页和所有的奇数页
  continue;
  /* 1. 设置所有的偶数页的struct page结构体的slab标志,因为在调用kmem_cache_free时会检查
  虚拟地址对应的page结构体是否设置了slab标志,如果没有设置,那么无法释放
  2. 如果用kfree释放,这个标志可以保证调用slab_free -> __slab_free -> kfence_free
  */
  __SetPageSlab(&pages[i]);
  }
   
  // 将前两页在页表中的PTE项的Present标志去掉,这样当cpu访问前两页时,就会触发缺页异常
  for (i = 0; i < 2; i++) {
  kfence_protect(addr);
  addr += PAGE_SIZE;
  }
   
  // kfence_metadata是一个数据类型为struct kfence_metadata的数组,元素个数是CONFIG_KFENCE_NUM_OBJECTS
  // 从这里可以看出,每一个kfence_metadata数组成员管理一个object
  for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
  struct kfence_metadata *meta = &kfence_metadata[i];
   
  /* Initialize metadata. */
  INIT_LIST_HEAD(&meta->list);
  raw_spin_lock_init(&meta->lock);
  meta->state = KFENCE_OBJECT_UNUSED; // object的初始状态为UNUSED
  meta->addr = addr; /* object所在的4KB内存的起始地址 */
  list_add_tail(&meta->list, &kfence_freelist); // 添加到全局链表中
   
  // 将object所在的4KB内存的下一个4KB的页表映射信息置为无效,用来检测内存越界访问
  kfence_protect(addr + PAGE_SIZE);
   
  addr += 2 * PAGE_SIZE;
  }
   
  // 之前在调用memblock_alloc时在kmemleak中有记录,这里先删除这部分记录,防止后面调用kfence_alloc出现冲突
  kmemleak_free(__kfence_pool);
   
  return true;
  }
折叠

周期性开启kfence内存池

在kfence_init中还添加了一个kfence_timer的延迟任务,用于周期性开启kfence内存分配,实现如下:

  • toggle_allocation_gate
  /*
  * Set up delayed work, which will enable and disable the static key. We need to
  * use a work queue (rather than a simple timer), since enabling and disabling a
  * static key cannot be done from an interrupt.
  *
  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
  * more aggressive sampling intervals), we could get away with a variant that
  * avoids IPIs, at the cost of not immediately capturing allocations if the
  * instructions remain cached.
  */
  static struct delayed_work kfence_timer;
  static void toggle_allocation_gate(struct work_struct *work)
  {
  if (!READ_ONCE(kfence_enabled))
  return;
   
  // 周期性将kfence_allocation_gate设置为0,这个作为一个kfence内存池开启的标志位,0表示开启,非0表示关闭,
  // 保证每隔一定时间最多只允许从kfence内存池分配一次内存
  atomic_set(&kfence_allocation_gate, 0);
  // 使用static key来优化性能,因为直接通过读取kfence_allocation_gate的值是否为0来判断的性能开销比较大
  #ifdef CONFIG_KFENCE_STATIC_KEYS
  /* 打开static key,并且等待从kfence内存池分配 */
  static_branch_enable(&kfence_allocation_key);
   
  if (sysctl_hung_task_timeout_secs) { // 内核发出hang task警告的时间最短时间长度,一般为120秒
  /*
  * 如果内存分配没有那么频繁,就有可能出现等待时间过长的问题,这里将等待超时时间设置为hang task警告时间的一半,
  这样内核就不会因为处于D状态过长导致内核出现警告。
   
  被唤醒的原因:
  1. 当有人从kfence分配了内存,会将kfence_allocation_gate设置为1,然后唤醒阻塞在allocation_wait里的任务
  2. 超时
  */
  wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
  sysctl_hung_task_timeout_secs * HZ / 2);
  } else {
  /* 如果hangtask检测时间为0,表示时间无限长,那么可以放心地等待下去,直到有人从kfence分配了内存,会将kfence_allocation_gate
  设置为1,然后唤醒阻塞在allocation_wait里的任务
  */
  wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
  }
   
  /* 将static keys关闭,保证不会进入__kfence_alloc */
  static_branch_disable(&kfence_allocation_key);
  #endif
  // 等待kfence_sample_interval,单位时毫秒,然后再此开启kfence内存池
  queue_delayed_work(system_unbound_wq, &kfence_timer,
  msecs_to_jiffies(kfence_sample_interval));
  }
  static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
折叠

分配内存

框图:
image

  • 入口1:
  kmalloc
  -> kmem_cache_alloc_trace
  -> slab_alloc
  -> return
  -> __kmalloc
  -> slab_alloc
  -> return
  • 入口2
  kmem_cache_alloc
  -> slab_alloc

上面两个路径最后都会调用到slab_alloc:

  slab_alloc
  -> slab_alloc_node
  -> kfence_alloc
  -> 如果kfence_alloc返回NULL的话,走常规的slub分配
  • kfence_alloc
  static __always_inline void *kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
  {
  #ifdef CONFIG_KFENCE_STATIC_KEYS
  /* 如果内核配置了kfence_static_keys,那么走这个优化分支 */
  if (static_branch_unlikely(&kfence_allocation_key))
  #else
  /* 常规的判断分支,性能比static key分支差 */
  if (unlikely(!atomic_read(&kfence_allocation_gate)))
  #endif
  return __kfence_alloc(s, size, flags);
  return NULL;
  }
  • __kfence_alloc
  void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
  {
  /*
  目前kfence内存池仅支持大小不超过一页的内存大小object分配
  */
  if (size > PAGE_SIZE)
  return NULL;
   
  /*
  * 需要从DMA、DMA32、HIGHMEM分配内存的话,kfence内存池不支持。因为kfence内存池的内存
  属性不一定满足需求,比如dma一般要求内存是不带cache的,而kfence内存池中的内存不能保证这一点。
  */
  if ((flags & GFP_ZONEMASK) ||
  (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32)))
  return NULL;
   
  /*
  下面判断可以保证只有一个分配者可以进入,进入后kfence内存池就关闭后,在下次开启之前,所有的分配者
  都无法进入,只能返回NULL,从而走常规的slub分配器。
  */
  if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
  return NULL;
  #ifdef CONFIG_KFENCE_STATIC_KEYS
  /*
  * 检查allocation_wait中是否有进程在阻塞,有的话,会起一个work来唤醒被阻塞的进程
  */
  if (waitqueue_active(&allocation_wait)) {
  /*
  * Calling wake_up() here may deadlock when allocations happen
  * from within timer code. Use an irq_work to defer it.
  */
  irq_work_queue(&wake_up_kfence_timer_work);
  }
  #endif
  // 判断kfence功能是否使能了
  if (!READ_ONCE(kfence_enabled))
  return NULL;
   
  // 从kfence内存池中分配object
  return kfence_guarded_alloc(s, size, flags);
  }
  • kfence_guarded_alloc [kfence_alloc -> __kfence_alloc -> kfence_guarded_alloc]
  static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
  {
  struct kfence_metadata *meta = NULL;
  unsigned long flags;
  struct page *page;
  void *addr;
   
  // 检查kfence内存池是否还有空闲的内存页
  if (!list_empty(&kfence_freelist)) {
  // 获取空闲内存页对应的kfence_metadata数据结构
  meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
  list_del_init(&meta->list);
  }
   
  // 如果为空,表示kfence内存池已经分配完了。需要用常规的slub分配器分配。
  if (!meta)
  return NULL;
   
  // 获取meta对应的空闲内存页的虚拟首地址
  meta->addr = metadata_to_pageaddr(meta);
  /* 如果是空闲的,那么需要恢复这个内存页在页表的PTE的present标志,保证cpu可以正常访问这页内存而不发生缺页异常
   
  这里为什么要判断freed呢?因为在初始函数kfence_init_pool中设置的初始状态是KFENCE_OBJECT_UNUSED,表示还
  这页内存还没有使用过,而且初始化时也没有调用kfence_protect来保护该页,所以对于UNUSED的页就没有必要kfence_unprotect
   
  只有当这页被分配出去,然后释放的时候会将该页设置为freed,并且调用kfence_protect来保护该页,用于检查use after free。
  所以对于free的内存页在下次分配的时候当然要进行kfence_unprotect处理。
  */
  if (meta->state == KFENCE_OBJECT_FREED)
  kfence_unprotect(meta->addr);
   
  /*
  * Note: for allocations made before RNG initialization, will always
  * return zero. We still benefit from enabling KFENCE as early as
  * possible, even when the RNG is not yet available, as this will allow
  * KFENCE to detect bugs due to earlier allocations. The only downside
  * is that the out-of-bounds accesses detected are deterministic for
  * such allocations.
  如果随机数发生器初始化之前分配,那么object的地址是从这页内存的起始位置开始。当随机数
  发生器可以工作了,那么将object放到这页内存的最右侧
  */
  if (prandom_u32_max(2)) {
  /* Allocate on the "right" side, re-calculate address. */
  meta->addr += PAGE_SIZE - size;
  meta->addr = ALIGN_DOWN(meta->addr, cache->align);
  }
   
  // object起始地址
  addr = (void *)meta->addr;
   
  /*
  这个函数做了几件事:
  1. 将当前进程的调用栈记录到meta的alloc_track中,即内存分配栈
  2. 将当前进程的pid记录到meta的pid中
  3. 设置meta的状态为KFENCE_OBJECT_ALLOCATED,表示meta描述的一页内存已经被分配
  */
  metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
  /* 将当前kmem_cache记录到meta中 */
  WRITE_ONCE(meta->cache, cache);
  /* 记录object的大小 */
  meta->size = size;
  /* 将这页内存中除了给object用的size大小的空间之外的填充成一个跟地址相关的pattern数
  目的是在释放时检查有没有发生内存越界访问
  */
  for_each_canary(meta, set_canary_byte);
   
  /* 获取这页内存对应的struct page结构 */
  page = virt_to_page(meta->addr);
  /* 在page中记录对应的kmem_cache,将来释放的时候要用到 */
  page->slab_cache = cache;
  /* 由于kfence内存池中一个页只放了一个object,所以这里将objects设置为1 */
  if (IS_ENABLED(CONFIG_SLUB))
  page->objects = 1;
  // 如果是slab分配器,s_smem会记录第一个object的地址
  if (IS_ENABLED(CONFIG_SLAB))
  page->s_mem = addr;
   
  /* Memory initialization. */
   
  /*
  * We check slab_want_init_on_alloc() ourselves, rather than letting
  * SL*B do the initialization, as otherwise we might overwrite KFENCE's
  * redzone.
  */
  if (unlikely(slab_want_init_on_alloc(gfp, cache))) // 如果设置了__GFP_ZERO标志,返回true
  memzero_explicit(addr, size); // 将object使用的那部分区域清零
  if (cache->ctor) // 如果有构造函数
  cache->ctor(addr);
   
  /* KFENCE_COUNTER_ALLOCATED 表示kfence内存池中有多少object被分配出去了,在释放的时候会减一 */
  atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
  /* KFENCE_COUNTER_ALLOCS 表示发生从kfence内存池分配内存的次数,单调递增 */
  atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
   
  return addr;
  }
折叠

释放内存

  • 路径1:
  kfree
  -> slab_free
  -> slab_free_hook
  -> do_slab_free
  -> __slab_free
  -> kfence_free
  • 路径2
  kmem_cache_free
  -> slab_free

释放内存时,最终会调用到kfence_free

  • kfence_free
  static __always_inline __must_check bool kfence_free(void *addr)
  {
  // 检查要释放的虚拟地址是否在kfence内存池的虚拟地址范围内
  if (!is_kfence_address(addr))
  return false;
  __kfence_free(addr);
  return true;
  }
  • __kfence_free
  void __kfence_free(void *addr)
  {
  /*
  根据object的地址可以获取对应的meta。根据addr跟kfence内存池起始地址的偏移可以计算出一个索引,然后从kfence_metadata数组
  中就可以得到索引对应的meta
  */
  struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
   
  /*
  * 如果meta对应的kmem_cache有SLAB_TYPESAFE_BY_RCU,那么不能立刻释放,需要异步处理,当过了一个宽限期再释放
  在rcu_guarded_free会直接调用kfence_guarded_free
  */
  if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
  call_rcu(&meta->rcu_head, rcu_guarded_free);
  else
  kfence_guarded_free(addr, meta, false);
  }
  • kfence_guarded_free [kfence_free -> __kfence_free -> kfence_guarded_free]
  static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
  {
  struct kcsan_scoped_access assert_page_exclusive;
  unsigned long flags;
   
  // 如果meta的状态不是已分配的话或者地址不匹配,或者是释放了两次,或者是释放时传的地址跟申请时获得的不一样
  if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
  /* Invalid or double-free, bail out. */
  atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); // 将kfence检测到的内存问题的个数加1
  kfence_report_error((unsigned long)addr, false, NULL, meta,
  KFENCE_ERROR_INVALID_FREE);
  raw_spin_unlock_irqrestore(&meta->lock, flags);
  return;
  }
   
  /* 如果在缺页异常中检测到OOB内存错误,那么unprotected_page会记录发生异常的地址 */
  if (meta->unprotected_page) {
  // 将发生OOB的地址所在的page页清零
  memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
  // 将发生OOB的地址所在的内存页设置为保护,因为缺页异常的最后会取消保护发生异常的地址所在的页
  kfence_protect(meta->unprotected_page);
  meta->unprotected_page = 0;
  }
   
  /* 检查object所在的内存页的空闲区域的pattern值是否发生了改变,以此来判断是否发生了OOB
  for_eatch_canary首先检查object左侧的pattern,将第一个pattern不一致的信息输出。然后检查object右侧
  的pattern,也只输出第一个pattern不一致的信息输出
  */
  for_each_canary(meta, check_canary_byte);
   
  /*
  * Clear memory if init-on-free is set. While we protect the page, the
  * data is still there, and after a use-after-free is detected, we
  * unprotect the page, so the data is still accessible.
  */
  if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
  memzero_explicit(addr, meta->size);
   
  /* 这个函数做如下几件事:
  1. 将当前进程的调用栈存放到meta的free_track中,即内存释放栈
  2. 记录当前进程的pid到meta的pid成员中
  3. 设置meta的状态为KFENCE_OBJECT_FREED,表示对应的内存页空闲了
  */
  metadata_update_state(meta, KFENCE_OBJECT_FREED);
   
  /* 将这页内存保护起来,用来检测use after free类型的内存访问错误 */
  kfence_protect((unsigned long)addr);
   
  if (!zombie) {
  /* 将meta重新放回空闲链表 */
  list_add_tail(&meta->list, &kfence_freelist);
   
  // 将KFENCE_COUNTER_ALLOCATED的计数减1,表示当前有多少kfence内存池里有多少object被分配出去了
  atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
  // 将KFENCE_COUNTER_FREES的计数加1,表示kfence内存池发生了多少次object释放,单调递增
  atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
  } else {
  /* 当kmem_cache被销毁时,所有尚未释放的object个数会记录到KFENCE_COUNTER_ZOMBIES中
  处于zombie的object也时free的,但是不能被分配了
  */
  atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
  }
  }
折叠

检查pattern区

  • for_each_canary [kfence_free -> __kfence_free -> kfence_guarded_free -> for_each_canary]
  /* __always_inline this to ensure we won't do an indirect call to fn. */
  static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
  {
  const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
  unsigned long addr;
   
  /* 检查object所在的内存页的左侧的pattern区域 */
  for (addr = pageaddr; addr < meta->addr; addr++) {
  if (!fn((u8 *)addr)) // 如果不匹配,会输出kfence错误log,并返回false
  break;
  }
   
  /* 检查object所在的内存页的右侧的pattern区域 */
  for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
  if (!fn((u8 *)addr)) // 如果不匹配,会输出kfence错误log,并返回false
  break;
  }
  }
  • check_canary_byte [kfence_free -> __kfence_free -> kfence_guarded_free -> for_each_canary -> check_canary_byte ]
  /* Check canary byte at @addr. */
  static inline bool check_canary_byte(u8 *addr)
  {
  if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
  return true;
   
  // 如果内存页中的空闲区域的值跟之前的pattern值不同,表示在该页内部发生了越界,这种越界不会触发缺页
  // KFENCE_COUNTER_BUGS的计数加1,表示kfence检测到的内存问题的个数
  atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
  kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
  KFENCE_ERROR_CORRUPTION);
  return false;
  }

kmem_cache销毁

  kmem_cache_destroy
  -> shutdown_cache
  -> kfence_shutdown_cache
  • kfence_shutdown_cache
  void kfence_shutdown_cache(struct kmem_cache *s)
  {
  unsigned long flags;
  struct kfence_metadata *meta;
  int i;
   
  for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
  bool in_use;
   
  meta = &kfence_metadata[i];
   
  /* 跳过不跟指定kmem_cache匹配的meta以及状态不是已分配的meta
  */
  if (READ_ONCE(meta->cache) != s ||
  READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
  continue;
   
  raw_spin_lock_irqsave(&meta->lock, flags);
  in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
  raw_spin_unlock_irqrestore(&meta->lock, flags);
   
  if (in_use) {
  /*
  * This cache still has allocations, and we should not
  * release them back into the freelist so they can still
  * safely be used and retain the kernel's default
  * behaviour of keeping the allocations alive (leak the
  * cache); however, they effectively become "zombie
  * allocations" as the KFENCE objects are the only ones
  * still in use and the owning cache is being destroyed.
  *
  * We mark them freed, so that any subsequent use shows
  * more useful error messages that will include stack
  * traces of the user of the object, the original
  * allocation, and caller to shutdown_cache().
  */
  kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
  // 将zombie设置为true,被释放的meta并不会加入到kfence_freelist中,也就不会分分配出去
  // 处于zombie的object也属于free,但是不能再被分配
  }
  }
   
  for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
  meta = &kfence_metadata[i];
   
  /* See above. */
  if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
  continue;
   
  raw_spin_lock_irqsave(&meta->lock, flags);
  // 将meta的cache字段清除,这样通过/sys/kernel/debug/kfence/objects知道哪些object是zombie的
  if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
  meta->cache = NULL;
  raw_spin_unlock_irqrestore(&meta->lock, flags);
  }
  }
折叠

缺页异常

  • 当发生内存越界访问导致被protect的页被访问,此时会发生缺页。
    image

  • 当发生了use after free,即object被释放后在没有申请的情况下,又访问这个object,也会发生缺页。因为在释放时,空闲object所在的内存页已经被保护了。
    image

路径:

  handle_page_fault
  -> do_kern_addr_fault
  -> bad_area_nosemaphore
  -> __bad_area_nosemaphore
  -> kernelmode_fixup_or_oops
  -> page_fault_oops
  -> kfence_handle_page_fault
  • kfence_handle_page_fault
  /*
  addr是导致缺页的地址
  is_write表示是否是写访问
  regs记录缺页发生时的cpu寄存器上下文
  */
  bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
  {
  /*
  根据缺页发生的地址计算在kfence内存池中的索引
  */
  const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
  struct kfence_metadata *to_report = NULL;
  enum kfence_error_type error_type;
  unsigned long flags;
   
  // 判断是否为kfence内存池的地址范围
  if (!is_kfence_address((void *)addr))
  return false;
   
  // 检查kfence是否被关闭了,可以向/sys/module/kfence/parameters/sample_interval写入0关闭kfence
  if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
  return kfence_unprotect(addr); /* ... unprotect and proceed. */
   
  // KFENCE_COUNTER_BUGS计数加1,表示检测到的内存错误的个数
  atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
   
  if (page_index % 2) {
  /*
  如果是在kfence内存池中奇数页上发生的缺页,表示发生了内存越界。因为在初始化时,已经将奇数页保护起来了
  */
   
  /* This is a redzone, report a buffer overflow. */
  struct kfence_metadata *meta;
  int distance = 0;
   
  // 获取缺页地址左边的一页对应的meta,因为奇数页不用来存放object。
  meta = addr_to_metadata(addr - PAGE_SIZE);
  if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { // 检查左边的页是否分配了
  to_report = meta;
  /* Data race ok; distance calculation approximate.
  计算发生缺页的地址跟左边被分配出去的object的结尾地址之间的距离
  */
  distance = addr - data_race(meta->addr + meta->size);
  }
   
  // 检查缺页地址右边的页对应的meta
  meta = addr_to_metadata(addr + PAGE_SIZE);
  if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { // 检查右边的页是否分配了
  /* Data race ok; distance calculation approximate.
  如果to_report是空,表示左边的页没有分配,那么当前右边的页就是发生越界的object所在的页
  如果左边的页也分配了,需要比较右边的的页中object的起始地址距离缺页发生的地址之间的距离跟左边页计算来的
  的距离,距离小的一边就是发生越界的object所在的页
  */
  if (!to_report || distance > data_race(meta->addr) - addr)
  to_report = meta;
  }
   
  // 如果左边和右边的页都没有分配出去,这是一种kfence也不敢确定的异常行为,可能是UAF或者OOB
  if (!to_report)
  goto out;
   
  raw_spin_lock_irqsave(&to_report->lock, flags);
  // 记录缺页发生的地址
  to_report->unprotected_page = addr;
  // kfence检测到的错误类型为越界访问
  error_type = KFENCE_ERROR_OOB;
   
  /*
  * If the object was freed before we took the look we can still
  * report this as an OOB -- the report will simply show the
  * stacktrace of the free as well.
  */
  } else {
  // 表示发生了UAF,在偶数页上发生了缺页,只有一种可能,就是object被释放后,没有申请的情况下,又访问了这个object。
  // 在前面的分析中直到,对于偶数页,只有在free后才会被protect起来。
  to_report = addr_to_metadata(addr);
  if (!to_report)
  goto out;
   
  raw_spin_lock_irqsave(&to_report->lock, flags);
  // kfence检测到UAF内存访问错误
  error_type = KFENCE_ERROR_UAF;
  /*
  * We may race with __kfence_alloc(), and it is possible that a
  * freed object may be reallocated. We simply report this as a
  * use-after-free, with the stack trace showing the place where
  * the object was re-allocated.
  */
  }
   
  out:
  if (to_report) {
  // 报告OOB内存访问错误
  kfence_report_error(addr, is_write, regs, to_report, error_type);
  raw_spin_unlock_irqrestore(&to_report->lock, flags);
  } else {
  /* 触发OOB的左侧和右侧的内存页都没有分配,既可能使UAF,也可能是OOB
  This may be a UAF or OOB access, but we can't be sure. */
  kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
  }
   
  // 执行到这里,说明kfence不希望系统宕机,所以撤销发生缺页的地址所在的内存区的保护,保证系统还可以正常跑下去
  return kfence_unprotect(addr); /* Unprotect and let access proceed. */
  }
折叠

错误报告

当检测到内存错误访问时,会调用kfence_report_error输出错误log。

错误种类分为如下几种:

  1. 缺页异常中检测到的访问了protect页的oob:KFENCE_ERROR_OOB
    image

  2. 释放内存时检测到的访问了object所在的内存区的空闲区域的OOB:KFENCE_ERROR_CORRUPTION
    image

  3. 缺页异常中检测到的访问了被释放的object所在的内存页的UAF:KFENCE_ERROR_UAF
    image

  4. 释放内存时检测到的kfence到重复释放或者申请和释放的地址不一致:KFENCE_ERROR_INVALID_FREE

  5. 缺页异常中检测到的kfence无法确定的内存访问错误,比如发生OOB时但是protect页左右的内存页都没有分配出去:KFENCE_ERROR_INVALID

  • kfence_report_error
  /*
  address: 导致内存问题的地址
  is_write: 是不是写访问、
  regs: 发生缺页异常时的cpu上下文
  meta:跟导致内存异常的地址关联的meta,对于访问protect区域的oob来说,meta表示的是因为访问那个object导致的oob,这个object对应的meta
  type:内存问题的类型
  */
   
  void kfence_report_error(unsigned long address, bool is_write, struct pt_regs *regs,
  const struct kfence_metadata *meta, enum kfence_error_type type)
  {
  unsigned long stack_entries[KFENCE_STACK_DEPTH] = { 0 };
  const ptrdiff_t object_index = meta ? meta - kfence_metadata : -1;
  int num_stack_entries;
  int skipnr = 0;
   
  /*
  对于regs非空,是因为触发了缺页的情况,此时根据regs得到的调用栈不需要skip任何一项,所以skipnr为0,因为regs记录的就是异常发生那
  一刻的栈的状态;
   
  对于regs为空的场景,是通过释放内存触发的,记录调用栈的时候,调用栈里不可避免的会出现kfence、slab以及kmem_cache相关的函数,这些
  函数对于分析问题没啥帮助,所以对分析问题有帮助的是谁调用了这些函数,即谁在哪里执行了释放内存的操作,因为需要将这部分的调用栈输出出来,
  以节省开发人员时间,所以skipnr非0
  */
  if (regs) {
  /* 根据pt_regs获取发生异常时的调用栈,并且存放到stack_entries中,深度为64 */
  num_stack_entries = stack_trace_save_regs(regs, stack_entries, KFENCE_STACK_DEPTH, 0);
  } else {
  /* 如果没有传递pt_regs,那么记录的当前的调用栈,但是会将堆栈的去掉调用栈的第一项,即stack_trace_save */
  num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 1);
  /* 解析调用栈,目的是尽量得到导致内存问题的业务逻辑的位置,跳过kfence、slab、kfree、kmem_cache、kmalloc相关的函数
  这样更加方便定位问题
  */
  skipnr = get_stack_skipnr(stack_entries, num_stack_entries, &type);
  }
   
  /* Require non-NULL meta, except if KFENCE_ERROR_INVALID. */
  if (WARN_ON(type != KFENCE_ERROR_INVALID && !meta))
  return;
   
  if (meta)
  lockdep_assert_held(&meta->lock);
  /*
  * Because we may generate reports in printk-unfriendly parts of the
  * kernel, such as scheduler code, the use of printk() could deadlock.
  * Until such time that all printing code here is safe in all parts of
  * the kernel, accept the risk, and just get our message out (given the
  * system might already behave unpredictably due to the memory error).
  * As such, also disable lockdep to hide warnings, and avoid disabling
  * lockdep for the rest of the kernel.
  */
  lockdep_off();
   
  pr_err("==================================================================\n");
  /* Print report header. */
  switch (type) {
  case KFENCE_ERROR_OOB: { // 访问了protect的内存页导致的OOB
   
  // 如果触发异常的地址小于meta对应的object地址,意味着访问了与object所在的内存页紧邻的左边的protect内存页
  // 否则,意味着访问的是与object所在的内存页紧邻的右边的protect内存页
  const bool left_of_object = address < meta->addr;
   
  pr_err("BUG: KFENCE: out-of-bounds %s in %pS\n\n", get_access_type(is_write),
  (void *)stack_entries[skipnr]);
   
  // 输出访问类型,缺页地址,缺页地址跟object之间的字节偏移,缺页地址在object的左边内存页还是右边内存页,以及object的索引
  pr_err("Out-of-bounds %s at 0x%p (%luB %s of kfence-#%td):\n",
  get_access_type(is_write), (void *)address,
  left_of_object ? meta->addr - address : address - meta->addr,
  left_of_object ? "left" : "right", object_index);
  break;
  }
  case KFENCE_ERROR_UAF: // object被释放了,没有申请,又访问了
  pr_err("BUG: KFENCE: use-after-free %s in %pS\n\n", get_access_type(is_write),
  (void *)stack_entries[skipnr]);
  pr_err("Use-after-free %s at 0x%p (in kfence-#%td):\n",
  get_access_type(is_write), (void *)address, object_index);
  break;
  case KFENCE_ERROR_CORRUPTION: // object所在的内存页的空闲区域的pattern被破坏,也属于OOB
  pr_err("BUG: KFENCE: memory corruption in %pS\n\n", (void *)stack_entries[skipnr]);
  pr_err("Corrupted memory at 0x%p ", (void *)address); // 发生pattern不一致的地址
  print_diff_canary(address, 16, meta); // 显示pattern不一致的地址右侧16字节地址范围内的数据的匹配信息
  pr_cont(" (in kfence-#%td):\n", object_index); // object的索引
  break;
  case KFENCE_ERROR_INVALID: // 缺页异常里检测到的无效的错误
  pr_err("BUG: KFENCE: invalid %s in %pS\n\n", get_access_type(is_write),
  (void *)stack_entries[skipnr]);
  pr_err("Invalid %s at 0x%p:\n", get_access_type(is_write),
  (void *)address);
  break;
  case KFENCE_ERROR_INVALID_FREE: // kfence_free检测到的重复释放以及申请和释放的地址不一致的错误
  pr_err("BUG: KFENCE: invalid free in %pS\n\n", (void *)stack_entries[skipnr]);
  pr_err("Invalid free of 0x%p (in kfence-#%td):\n", (void *)address,
  object_index);
  break;
  }
   
  /* 输出内存错误发生的调用栈,其中skipnr用于帮助跳过一些对分析问题没有帮助的mm内部函数 */
  stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr, 0);
   
  if (meta) {
  pr_err("\n");
  /*
  1. 输出meta的状态信息,object的地址范围,kmem_cache以及进程pid
  2. 输出object被分配出去时的调用栈
  3. 如果meta是free状态,那么还会输出内存释放时的调用栈,以及调用者的pid
  */
  kfence_print_object(NULL, meta);
  }
   
  /* Print report footer. */
  pr_err("\n");
  if (no_hash_pointers && regs) // 可以通过启动参数no_hash_pointers来设置为1
  show_regs(regs); // 输出缺页异常发生时的CPU寄存器内容以及调用栈
  else
  dump_stack_print_info(KERN_ERR); // 简略的debug信息
  trace_error_report_end(ERROR_DETECTOR_KFENCE, address);
  pr_err("==================================================================\n");
   
  lockdep_on();
   
  if (panic_on_warn) // 可以通过将/proc/sys/kernel/panic_on_warn设置为1让系统宕机
  panic("panic_on_warn set ...\n");
   
  /* We encountered a memory safety error, taint the kernel!
  可以通过给启动参数设置'panic_on_taint=0x20',这样当添加TAINT_BAD_PAGE类型的taint时,会发生宕机
  */
  add_taint(TAINT_BAD_PAGE, LOCKDEP_STILL_OK);
  }
折叠
  • get_stack_skipnr [kfence_report_error -> get_stack_skipnr ]

从调用栈里将mm的内部函数跳过。

  /*
  * Get the number of stack entries to skip to get out of MM internals. @type is
  * optional, and if set to NULL, assumes an allocation or free stack.
  */
  static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries,
  const enum kfence_error_type *type)
  {
  char buf[64];
  int skipnr, fallback = 0;
   
  if (type) {
  /* Depending on error type, find different stack entries. */
  switch (*type) {
  case KFENCE_ERROR_UAF:
  case KFENCE_ERROR_OOB:
  case KFENCE_ERROR_INVALID:
  /*
  * kfence_handle_page_fault() may be called with pt_regs
  * set to NULL; in that case we'll simply show the full
  * stack trace.
  */
  return 0;
  case KFENCE_ERROR_CORRUPTION:
  case KFENCE_ERROR_INVALID_FREE:
  break;
  }
  }
   
  for (skipnr = 0; skipnr < num_entries; skipnr++) {
  int len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skipnr]);
   
  if (str_has_prefix(buf, ARCH_FUNC_PREFIX "kfence_") ||
  str_has_prefix(buf, ARCH_FUNC_PREFIX "__kfence_") ||
  !strncmp(buf, ARCH_FUNC_PREFIX "__slab_free", len)) {
  /*
  * In case of tail calls from any of the below
  * to any of the above.
  */
  fallback = skipnr + 1;
  }
   
  /* Also the *_bulk() variants by only checking prefixes. */
  if (str_has_prefix(buf, ARCH_FUNC_PREFIX "kfree") ||
  str_has_prefix(buf, ARCH_FUNC_PREFIX "kmem_cache_free") ||
  str_has_prefix(buf, ARCH_FUNC_PREFIX "__kmalloc") ||
  str_has_prefix(buf, ARCH_FUNC_PREFIX "kmem_cache_alloc"))
  goto found;
  }
  if (fallback < num_entries)
  return fallback;
  found:
  skipnr++;
  return skipnr < num_entries ? skipnr : 0;
  }
折叠
  • print_diff_canary [kfence_report_error -> print_diff_canary]
  /*
  * Show bytes at @addr that are different from the expected canary values, up to
  * @max_bytes.
   
  address: pattern不一致的地址,这个地址可能是左侧pattern区域或者右侧pattern区域的,通过跟meta->addr比较就可以知道,参考下图
  bytes_to_show: 最长输出多少个地址的的匹配信息
  meta:pattern区所在的内存页对应的meta信息
  */
  static void print_diff_canary(unsigned long address, size_t bytes_to_show,
  const struct kfence_metadata *meta)
  {
  const unsigned long show_until_addr = address + bytes_to_show; //
  const u8 *cur, *end;
   
  /* 计算结束地址,不能越出pattern区的范围。比如左侧的pattern区,最长输出到meta->addr-1。
  对于右侧的pattern区,最长到右边保护区起始地址-1 */
  end = (const u8 *)(address < meta->addr ? min(show_until_addr, meta->addr)
  : min(show_until_addr, PAGE_ALIGN(address)));
   
  pr_cont("[");
  for (cur = (const u8 *)address; cur < end; cur++) {
  if (*cur == KFENCE_CANARY_PATTERN(cur))
  pr_cont(" ."); // 对于pattern一致的地址,输出 '.'
  else if (no_hash_pointers) // 可以通过启动参数no_hash_pointers来设置为1
  pr_cont(" 0x%02x", *cur);
  else /* Do not leak kernel memory in non-debug builds. */
  pr_cont(" !"); // 对于pattern不一致的地址,输出 '!'
  }
  pr_cont(" ]");
  }

image

内存异常log分析

OOB错误

  • 读左侧保护区导致的OOB: KFENCE_ERROR_OOB

示例:

  size = kmalloc_cache_alignment(size);
  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT);
  expect.addr = buf - 1;
  READ_ONCE(*expect.addr);
  KUNIT_EXPECT_TRUE(test, report_matches(&expect));
  test_free(buf);

log:

  ==================================================================
  BUG: KFENCE: out-of-bounds read in test_out_of_bounds_read+0xad/0x1f2 [kfence_test]
   
  # 触发异常时的内核栈
  Out-of-bounds read at 0x000000008e1b5d12 (1B left of kfence-#109):
  test_out_of_bounds_read+0xad/0x1f2 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 分配object的调用栈
  kfence-#109 [0x00000000753194ac-0x000000000d237ced, size=32, cache=kmalloc-32] allocated by task 35779:
  test_alloc+0xe9/0x36f [kfence_test]
  test_out_of_bounds_read+0x86/0x1f2 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35779 Comm: kunit_try_catch Kdump: loaded Not tainted 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================
  • 读右侧保护区导致的OOB: KFENCE_ERROR_OOB

示例:

  size = kmalloc_cache_alignment(size);
  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT);
  expect.addr = buf + size;
  READ_ONCE(*expect.addr);
  KUNIT_EXPECT_TRUE(test, report_matches(&expect));
  test_free(buf);

log:

  ==================================================================
  BUG: KFENCE: out-of-bounds read in test_out_of_bounds_read+0x14a/0x1f2 [kfence_test]
   
  # 触发异常的调用栈
  Out-of-bounds read at 0x0000000002d76451 (32B right of kfence-#111):
  test_out_of_bounds_read+0x14a/0x1f2 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 分配object的调用栈
  kfence-#111 [0x00000000432dce97-0x000000008d6138c3, size=32, cache=kmalloc-32] allocated by task 35779:
  test_alloc+0xe9/0x36f [kfence_test]
  test_out_of_bounds_read+0x140/0x1f2 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35779 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================
  • 写左侧保护区导致的OOB: KFENCE_ERROR_OOB

示例:

  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT);
  expect.addr = buf - 1;
  WRITE_ONCE(*expect.addr, 42);

log:

  ==================================================================
  BUG: KFENCE: out-of-bounds write in test_out_of_bounds_write+0x7a/0x116 [kfence_test]
   
  # 触发异常的调用栈
  Out-of-bounds write at 0x000000003f50719f (1B left of kfence-#134):
  test_out_of_bounds_write+0x7a/0x116 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 分配object的调用栈
  kfence-#134 [0x0000000080436418-0x0000000052b079df, size=32, cache=kmalloc-32] allocated by task 35781:
  test_alloc+0xe9/0x36f [kfence_test]
  test_out_of_bounds_write+0x65/0x116 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35781 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================

UAF

KFENCE_ERROR_UAF

示例:

  expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
  test_free(expect.addr);
  READ_ONCE(*expect.addr);

log:

  ==================================================================
  BUG: KFENCE: use-after-free read in test_use_after_free_read+0x89/0x10b [kfence_test]
   
  # 触发UAF时的调用栈
  Use-after-free read at 0x0000000067fb284c (in kfence-#152):
  test_use_after_free_read+0x89/0x10b [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 分配object的调用栈
  kfence-#152 [0x0000000067fb284c-0x00000000cd45daeb, size=32, cache=kmalloc-32] allocated by task 35783:
  test_alloc+0xe9/0x36f [kfence_test]
  test_use_after_free_read+0x63/0x10b [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 释放object的调用栈
  freed by task 35783:
  test_use_after_free_read+0x85/0x10b [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 7 PID: 35783 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================

pattern区不一致

  • 右侧pattern区不一致:KFENCE_ERROR_CORRUPTION

示例:

  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT);
  expect.addr = buf + size;
  WRITE_ONCE(*expect.addr, 42);
  test_free(buf);

log:

  ==================================================================
  BUG: KFENCE: memory corruption in test_corruption+0x9c/0x1cb [kfence_test]
   
  # 输出pattern不一致的地址及其右侧一共16个地址(不超出右侧pattern区)的匹配结果,'!'表示不一致,'.'表示一致。
  Corrupted memory at 0x000000003b880c36 [ ! . . . . . . . . . . . . . . . ] (in kfence-#139):
  test_corruption+0x9c/0x1cb [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 分配object的调用栈
  kfence-#139 [0x0000000084320c94-0x00000000ebf5c6c5, size=32, cache=kmalloc-32] allocated by task 35789:
  test_alloc+0xe9/0x36f [kfence_test]
  test_corruption+0x72/0x1cb [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35789 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================
  • 左侧pattern区不一致:KFENCE_ERROR_CORRUPTION

示例:

  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT);
  expect.addr = buf - 1;
  WRITE_ONCE(*expect.addr, 42);
  test_free(buf);

log:

  ==================================================================
  BUG: KFENCE: memory corruption in test_corruption+0x14e/0x1cb [kfence_test]
   
  # 输出pattern不一致的地址及其右侧一共16个地址(不超出左侧pattern区)的匹配结果,'!'表示不一致,'.'表示一致。
  Corrupted memory at 0x00000000d7861e9d [ ! ] (in kfence-#155):
  test_corruption+0x14e/0x1cb [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  kfence-#155 [0x000000009acdf655-0x00000000008cbfb7, size=32, cache=kmalloc-32] allocated by task 35789:
  test_alloc+0xe9/0x36f [kfence_test]
  test_corruption+0x124/0x1cb [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35789 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================

无效的释放

  • 重复释放:KFENCE_ERROR_INVALID_FREE

示例:

  expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
  test_free(expect.addr);
  test_free(expect.addr); /* Double-free. */

log:

  ==================================================================
  BUG: KFENCE: invalid free in test_double_free+0x9a/0x124 [kfence_test]
   
  # 触发重复释放的调用栈
  Invalid free of 0x000000007fb6a8f8 (in kfence-#136):
  test_double_free+0x9a/0x124 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 分配objcet的调用栈
  kfence-#136 [0x000000007fb6a8f8-0x00000000d967e9cd, size=32, cache=test] allocated by task 35786:
  test_alloc+0xdf/0x36f [kfence_test]
  test_double_free+0x63/0x124 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  # 释放object的调用栈
  freed by task 35786:
  test_double_free+0x7b/0x124 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35786 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================
  • 申请和释放的地址不一致:KFENCE_ERROR_INVALID_FREE

示例:

  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY);
  expect.addr = buf + 1; /* Free on invalid address. */
  test_free(expect.addr); /* Invalid address free. */
  test_free(buf); /* No error. */

log:

  ==================================================================
  BUG: KFENCE: invalid free in test_invalid_addr_free+0x8b/0x12b [kfence_test]
   
  Invalid free of 0x0000000000b3e82d (in kfence-#124):
  test_invalid_addr_free+0x8b/0x12b [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  kfence-#124 [0x000000002aecf77f-0x0000000046ff045a, size=32, cache=kmalloc-32] allocated by task 35787:
  test_alloc+0xe9/0x36f [kfence_test]
  test_invalid_addr_free+0x65/0x12b [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35787 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================

其他无法识别的内存错误

如触发缺页的OOB区域左侧和右侧的内存页都没有分配出去:KFENCE_ERROR_INVALID

示例:

  READ_ONCE(__kfence_pool[10]);

log:

  ==================================================================
  BUG: KFENCE: invalid read in test_invalid_access+0x48/0xd0 [kfence_test]
   
  Invalid read at 0x0000000023713263:
  test_invalid_access+0x48/0xd0 [kfence_test]
  kunit_try_run_case+0x51/0x80
  kunit_generic_run_threadfn_adapter+0x16/0x30
  kthread+0x11a/0x140
  ret_from_fork+0x22/0x30
   
  CPU: 5 PID: 35936 Comm: kunit_try_catch Kdump: loaded Tainted: G B 5.14.0+ #4
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  ==================================================================

debugfs调试节点

/sys/kernel/debug/kfence下面有两个用于查看kfence状态的节点:objects和stats

stats节点

  # cat stats
  enabled: 1
  currently allocated: 47
  total allocations: 2416
  total frees: 2369
  zombie allocations: 0
  total bugs: 21

含义

名字含义
enabled kfence功能是否处于开启状态。可以通过内核启动参数开启,启动后可以通过模块参数关闭
currently allocated kfence内存池中有多少个object被分配出去了
total allocations 在kfence内存池中发生过object分配的总次数,当掉递增
total frees 在kfence内存池中发生过object释放的总次数,当掉递增
zombie allocations 当某个kmem_cache被销毁时,在kfence中与之对应的尚未释放的object个数
total bugs kfence检测到的内存错误的次数

实现

  static int stats_show(struct seq_file *seq, void *v)
  {
  int i;
   
  seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
  for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
  seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
   
  return 0;
  }
  DEFINE_SHOW_ATTRIBUTE(stats);

其中用到的统计数据定义如下:

  /* Statistics counters for debugfs. */
  enum kfence_counter_id {
  KFENCE_COUNTER_ALLOCATED,
  KFENCE_COUNTER_ALLOCS,
  KFENCE_COUNTER_FREES,
  KFENCE_COUNTER_ZOMBIES,
  KFENCE_COUNTER_BUGS,
  KFENCE_COUNTER_COUNT,
  };
  static atomic_long_t counters[KFENCE_COUNTER_COUNT];
  static const char *const counter_names[] = {
  [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
  [KFENCE_COUNTER_ALLOCS] = "total allocations",
  [KFENCE_COUNTER_FREES] = "total frees",
  [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
  [KFENCE_COUNTER_BUGS] = "total bugs",
  };

objects节点

输出kfence中每个meta的信息,当前状态以及调用栈。

  # cat objects
  kfence-#0 [0xffff89c43b202000-0xffff89c43b202067, size=104, cache=kmalloc-128] allocated by task 8:
  set_kthread_struct+0x30/0x40
  kthread+0x2e/0x140
  ret_from_fork+0x22/0x30
  ---------------------------------
  kfence-#1 [0xffff89c43b204000-0xffff89c43b20400f, size=16, cache=kmalloc-16] allocated by task 1:
  __smpboot_create_thread.part.9+0x3c/0x120
  smpboot_create_threads+0x67/0x90
  cpuhp_invoke_callback+0x105/0x400
  cpuhp_invoke_callback_range+0x40/0x80
  _cpu_up+0xd8/0x1e0
  cpu_up+0x85/0x90
  bringup_nonboot_cpus+0x4f/0x60
  smp_init+0x26/0x74
  kernel_init_freeable+0x10e/0x246
  kernel_init+0x16/0x120
  ret_from_fork+0x22/0x30
  ---------------------------------
  ...
  kfence-#40 [0xffff89c43b252dc0-0xffff89c43b252fff, size=576, cache=inode_cache] allocated by task 531:
  alloc_inode+0x87/0xa0
  new_inode_pseudo+0xb/0x50
  create_pipe_files+0x32/0x200
  __do_pipe_flags+0x2c/0xd0
  do_pipe2+0x2d/0xb0
  __x64_sys_pipe+0x10/0x20
  do_syscall_64+0x3a/0x80
  entry_SYSCALL_64_after_hwframe+0x44/0xae
   
  freed by task 531:
  destroy_inode+0x3b/0x70
  __dentry_kill+0xc5/0x150
  __fput+0xd9/0x230
  task_work_run+0x74/0xb0
  exit_to_user_mode_prepare+0x191/0x1a0
  syscall_exit_to_user_mode+0x19/0x30
  do_syscall_64+0x46/0x80
  entry_SYSCALL_64_after_hwframe+0x44/0xae
  ...
  ---------------------------------
  kfence-#254 unused
  ---------------------------------

含义

  • 对于被分配出去且尚未释放的object,只显示分配栈。
  • 对于当前处于free状态的object,既显示分配栈,也显示释放栈。处于zombie的object也属于free。
  • 对于从来没有被分配出去过的object,显示unused
  • 对于zombie的object,虽然是free的,但是已经不能被分配了,对应的kmem_cache被销毁的了,所以cache会显示为<destroyed>

实现

  static int show_object(struct seq_file *seq, void *v)
  {
  struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
  unsigned long flags;
   
  raw_spin_lock_irqsave(&meta->lock, flags);
  kfence_print_object(seq, meta);
  raw_spin_unlock_irqrestore(&meta->lock, flags);
  seq_puts(seq, "---------------------------------\n");
   
  return 0;
  }
  • kfence_print_object
  void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta)
  {
  const int size = abs(meta->size);
  const unsigned long start = meta->addr;
  const struct kmem_cache *const cache = meta->cache;
   
  lockdep_assert_held(&meta->lock);
   
  if (meta->state == KFENCE_OBJECT_UNUSED) { // 尚未使用的meta
  seq_con_printf(seq, "kfence-#%td unused\n", meta - kfence_metadata);
  return;
  }
   
  seq_con_printf(seq,
  "kfence-#%td [0x%p-0x%p"
  ", size=%d, cache=%s] allocated by task %d:\n",
  meta - kfence_metadata, (void *)start, (void *)(start + size - 1), size,
  (cache && cache->name) ? cache->name : "<destroyed>", meta->alloc_track.pid);
  kfence_print_stack(seq, meta, true); // 输出meta对应的object被分配出去时的调用栈
   
  if (meta->state == KFENCE_OBJECT_FREED) { // 如果meta对应的object被释放了
  seq_con_printf(seq, "\nfreed by task %d:\n", meta->free_track.pid);
  kfence_print_stack(seq, meta, false); // 输出meta对应的object被释放时的调用栈
  }
  }

测试框架

kfence提供了测试用例,在mm\kfence\kfence_test.c中。

  static int __init kfence_test_init(void)
  {
  /* 遍历内核中的tracepoint,在名为"console"的tracepoint上挂载一个hook函数 */
  for_each_kernel_tracepoint(register_tracepoints, NULL);
   
  /* 执行测试用例 */
  return __kunit_test_suites_init(kfence_test_suites);
  }
  • register_tracepoints
  static void register_tracepoints(struct tracepoint *tp, void *ignore)
  {
  check_trace_callback_type_console(probe_console);
  if (!strcmp(tp->name, "console"))
  WARN_ON(tracepoint_probe_register(tp, probe_console, NULL));
  }

当kfence_report_error输出错误log时,"console"这个tracepoint会触发,然后会回调到probe_console,在probe_console中会过滤kfence_report_error中输出的错误log,并记录到observed,用于跟期望的错误类型比对,比对通过表示测试成功。

  • probe_console

过滤kfence_report_error中输出的错误log,并记录到observed,用于跟期望的错误类型比对,比对通过表示测试成功。

  /* Probe for console output: obtains observed lines of interest. */
  static void probe_console(void *ignore, const char *buf, size_t len)
  {
  unsigned long flags;
  int nlines;
   
  spin_lock_irqsave(&observed.lock, flags);
  nlines = observed.nlines;
   
  if (strnstr(buf, "BUG: KFENCE: ", len) && strnstr(buf, "test_", len)) {
  /*
  * KFENCE report and related to the test.
  *
  * The provided @buf is not NUL-terminated; copy no more than
  * @len bytes and let strscpy() add the missing NUL-terminator.
  */
  strscpy(observed.lines[0], buf, min(len + 1, sizeof(observed.lines[0])));
  nlines = 1;
  } else if (nlines == 1 && (strnstr(buf, "at 0x", len) || strnstr(buf, "of 0x", len))) {
  strscpy(observed.lines[nlines++], buf, min(len + 1, sizeof(observed.lines[0])));
  }
   
  WRITE_ONCE(observed.nlines, nlines); /* Publish new nlines. */
  spin_unlock_irqrestore(&observed.lock, flags);
  }
  • kfence_test_suites

记录了测试case的具体内容:

  #define KFENCE_KUNIT_CASE(test_name) \
  { .run_case = test_name, .name = #test_name }, \
  { .run_case = test_name, .name = #test_name "-memcache" }
   
  static struct kunit_case kfence_test_cases[] = {
  KFENCE_KUNIT_CASE(test_out_of_bounds_read),
  KFENCE_KUNIT_CASE(test_out_of_bounds_write),
  KFENCE_KUNIT_CASE(test_use_after_free_read),
  KFENCE_KUNIT_CASE(test_double_free),
  KFENCE_KUNIT_CASE(test_invalid_addr_free),
  KFENCE_KUNIT_CASE(test_corruption),
  KFENCE_KUNIT_CASE(test_free_bulk),
  KFENCE_KUNIT_CASE(test_init_on_free),
  KUNIT_CASE(test_kmalloc_aligned_oob_read),
  KUNIT_CASE(test_kmalloc_aligned_oob_write),
  KUNIT_CASE(test_shrink_memcache),
  KUNIT_CASE(test_memcache_ctor),
  KUNIT_CASE(test_invalid_access),
  KUNIT_CASE(test_gfpzero),
  KUNIT_CASE(test_memcache_typesafe_by_rcu),
  KUNIT_CASE(test_krealloc),
  KUNIT_CASE(test_memcache_alloc_bulk),
  {},
  };
   
  static struct kunit_suite kfence_test_suite = {
  .name = "kfence",
  .test_cases = kfence_test_cases,
  .init = test_init,
  .exit = test_exit,
  };
  static struct kunit_suite *kfence_test_suites[] = { &kfence_test_suite, NULL };

以test_out_of_bounds_read为例:

  static void test_out_of_bounds_read(struct kunit *test)
  {
  size_t size = 32;
  struct expect_report expect = { // 期望发生的结果
  .type = KFENCE_ERROR_OOB, // 期望发生的错误类型
  .fn = test_out_of_bounds_read, // 期望导致错误发生的函数
  .is_write = false, // 期望的读写方向,这里是读
  };
  char *buf;
   
  setup_test_cache(test, size, 0, NULL);
   
  /*
  * If we don't have our own cache, adjust based on alignment, so that we
  * actually access guard pages on either side.
  */
  if (!test_cache)
  size = kmalloc_cache_alignment(size);
   
  /* Test both sides. */
   
  // 从kfence中分配内存,构造访问左边保护页的OOB,返回的是object所在页的首地址
  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT);
  expect.addr = buf - 1; // 期望在哪个地址上发生OOB,地址减1就是左边保护页的结尾地址
  READ_ONCE(*expect.addr); // 触发OOB异常
  KUNIT_EXPECT_TRUE(test, report_matches(&expect)); // 调用report_matche比对实际发生的错误跟期望发生的错误是否一致
  test_free(buf);
   
  // 从kfence中分配内存,构造访问右边保护页的OOB,返回的是object所在页的首地址
  buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT);
  expect.addr = buf + size; // 期望发生缺页的地址,地址加上size就是右边保护页的首地址
  READ_ONCE(*expect.addr); // 触发OOB异常
  KUNIT_EXPECT_TRUE(test, report_matches(&expect)); // 核对结果
  test_free(buf);
  }
  • report_matches
  static bool report_matches(const struct expect_report *r)
  {
  bool ret = false;
  unsigned long flags;
  typeof(observed.lines) expect;
  const char *end;
  char *cur;
   
  /* Doubled-checked locking. */
  if (!report_available())
  return false;
   
  /* Generate expected report contents. */
   
  /* Title */
  cur = expect[0];
  end = &expect[0][sizeof(expect[0]) - 1];
  switch (r->type) {
  case KFENCE_ERROR_OOB:
  cur += scnprintf(cur, end - cur, "BUG: KFENCE: out-of-bounds %s",
  get_access_type(r));
  break;
  case KFENCE_ERROR_UAF:
  cur += scnprintf(cur, end - cur, "BUG: KFENCE: use-after-free %s",
  get_access_type(r));
  break;
  case KFENCE_ERROR_CORRUPTION:
  cur += scnprintf(cur, end - cur, "BUG: KFENCE: memory corruption");
  break;
  case KFENCE_ERROR_INVALID:
  cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid %s",
  get_access_type(r));
  break;
  case KFENCE_ERROR_INVALID_FREE:
  cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid free");
  break;
  }
   
  scnprintf(cur, end - cur, " in %pS", r->fn);
  /* The exact offset won't match, remove it; also strip module name. */
  cur = strchr(expect[0], '+');
  if (cur)
  *cur = '\0';
   
  /* Access information */
  cur = expect[1];
  end = &expect[1][sizeof(expect[1]) - 1];
   
  switch (r->type) {
  case KFENCE_ERROR_OOB:
  cur += scnprintf(cur, end - cur, "Out-of-bounds %s at", get_access_type(r));
  break;
  case KFENCE_ERROR_UAF:
  cur += scnprintf(cur, end - cur, "Use-after-free %s at", get_access_type(r));
  break;
  case KFENCE_ERROR_CORRUPTION:
  cur += scnprintf(cur, end - cur, "Corrupted memory at");
  break;
  case KFENCE_ERROR_INVALID:
  cur += scnprintf(cur, end - cur, "Invalid %s at", get_access_type(r));
  break;
  case KFENCE_ERROR_INVALID_FREE:
  cur += scnprintf(cur, end - cur, "Invalid free of");
  break;
  }
   
  cur += scnprintf(cur, end - cur, " 0x%p", (void *)r->addr);
   
  spin_lock_irqsave(&observed.lock, flags);
  if (!report_available())
  goto out; /* A new report is being captured. */
   
  /* Finally match expected output to what we actually observed. */
  ret = strstr(observed.lines[0], expect[0]) && strstr(observed.lines[1], expect[1]);
  out:
  spin_unlock_irqrestore(&observed.lock, flags);
  return ret;
  }
折叠

完。

posted @ 2022-07-28 11:10  Sky&Zhang  阅读(497)  评论(0编辑  收藏  举报