本文将深入学习kdump相关代码,梳理kdump整个流程。
1. Overview
1.1 什么是kdump
1.2 kernel的分类
1.3 kdump流程
1.4 版本信息
- kernel版本是4.9.38
- kexec-tools版本是v2.0.16
- architecture是arm64
2. kexec
2.1 kexec overview
2.1.1 kexec功能
kexec主要有两个功能
2.1.2 代码下载/编译
kexec可通过github下载
1
|
$ git clone https://github.com/horms/kexec-tools.git
|
下载仓库后, 可交叉编译出arm64可执行文件
1 2 3 4 5
|
$ ./bootstrap $ mkdir timzhang $ ./configure --prefix=/home/timzhang/work/project/github/kexec-tools/timzhang --build=x86_64-linux-gnu --host=aarch64-linux-gnu --target=aarch64-linux-gnu $ make $ make install
|
2.1.3 kexec运行
1 2 3
|
$ sudo ./kexec -l ./Image --initrd=kdump.cpio --dtb=./chip_asic.dtb --append="1 maxcpus=1 reset_devices console=ttyS0,115200 earlycon debug user_debug=31 loglevel=10"
$ sudo ./kexec -e
|
1
|
$ sudo ./kexec -p ./Image --initrd=./kdump.cpio --dtb=./chip_asic.dtb --append="1 maxcpus=1 reset_devices console=ttyS0,115200 earlycon debug user_debug=31 loglevel=10"
|
注: Image和dtb文件最好和当前kernel版本保持一致!
2.2 kexec用户态
2.2.1 配置解析
判断是否加载crashkernel, 相关函数实现在is_crashkernel_mem_reserved()
该函数主要操作如下
- 读取/proc/iomem
- 调用回调函数, 处理Crash kernel/System RAM/Kernel code/Kernel data等感兴趣的内存部分.
1 2 3 4 5 6 7 8
|
# cat /proc/iomem ... ... 105100000-2ffffffff : System RAM 300020000-3ffffffff : System RAM 300080000-300aaffff : Kernel code 300b40000-300c85fff : Kernel data 310000000-313ffffff : Crash kernel 408000000-4ffffffff : System RAM
|
其中, 除了crash kernel部分, System RAM其余部分都是需要被dump的。
2.2.2 收集segment
kexec用户态的信息, 存储在struct kexec_info里面。
struct kexec_info结构体的定义如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
struct kexec_info { struct kexec_segment *segment; int nr_segments; struct memory_range *memory_range; int memory_ranges; struct memory_range *crash_range; int nr_crash_ranges; void *entry; struct mem_ehdr rhdr; unsigned long backup_start; unsigned long kexec_flags; unsigned long backup_src_start; unsigned long backup_src_size;
|
kexec在用户态, 主要是集齐5个segment, 它们分别是
-
kernel segment
-
ELF core header segment
-
initrd segment
-
dtb segment
-
purgatory segment
kernel segment
功能: 读取kexec运行时指定的kernel image
file type | probe | load | usage |
vmlinux |
elf_arm64_probe |
elf_arm64_load |
elf_arm64_usage |
Image |
image_arm64_probe |
image_arm64_load |
image_arm64_usage |
uImage |
uImage_arm64_probe |
uImage_arm64_load |
uImage_arm64_usage |
功能: 为kdump生成vmcore准备ELF core header
构造ELF core header segment时, 主要构造了ELF header和program header
其中, program header包含了PT_NOTE和PT_LOAD两类
program header 类型 | 内容 |
PT_NOTE |
cpu, vmcoreinfo |
PT_LOAD |
kernel text, system ram chunk |
构造结束后, 将ELF core header的起始地址保存到elfcorehdr_mem
initrd segment
功能: 读取kexec运行时指定的initrd
dtb segment
功能: 读取kexec运行时指定的dtb
设置属性
-
“linux,elfcorehdr”: 将ELF core header地址(elfcorehdr_mem)设置到此属性
-
“linux,usable-memory-range”: 将crash_reserved_mem设置到此属性(指定capture kernel的总内存大小)
purgatory segment
功能: 用于完成crash kernel完整性校验和kernel跳转
主要流程如下
- purgatory相关源文件生成purgatory.ro
- bin-to-hex将purgatory.ro转换成purgatory.c(ELF内容格式到purgatory[])
- purgatory.c和其它源文件编译生成kexec可执行程序
- kexec在运行过程中, 构造purgatory可重定位对象,放到purgatory buffer
purgatory.ro中有重要的三个符号
符号 | 说明 |
purgatory_start |
purgatory的启动地址, 保存到info->entry字段 |
arm64_kernel_entry |
capture kernel代码段首地址 |
arm64_dtb_addr |
capture kernel依赖的dtb地址 |
1 2 3 4
|
$ aarch64-linux-gnu-readelf -s purgatory.ro.sym |grep -e purgatory_start -e arm64_ 66: 0000000000000120 8 NOTYPE GLOBAL DEFAULT 4 arm64_kernel_entry 68: 0000000000000660 36 NOTYPE GLOBAL DEFAULT 1 purgatory_start 69: 0000000000000128 8 NOTYPE GLOBAL DEFAULT 4 arm64_dtb_addr
|
小结
5个segment收集完毕后, info.segment[]的布局如下
2.2.3 更新哈希值
调用update_purgatory(), 计算除了purgatory之外其它4个segment的sha256值, 并存储到sha256_digest符号
1 2 3
|
$ aarch64-linux-gnu-readelf -s purgatory.ro.sym |grep -e " sha256_regions" -e " sha256_digest" 56: 0000000000000000 256 OBJECT GLOBAL DEFAULT 4 sha256_regions 57: 0000000000000100 32 OBJECT GLOBAL DEFAULT 4 sha256_digest
|
2.2.4 开始加载
kexex通过kexec_load函数中的系统调用来完成最后的加载。
1 2 3 4 5
|
static inline long kexec_load(void *entry, unsigned long nr_segments, struct kexec_segment *segments, unsigned long flags) { return (long) syscall(__NR_kexec_load, entry, nr_segments, segments, flags); }
|
2.3 kexec内核态
2.3.1 crashkernel
crashkernel表示给capture kernel预留的内存.
在打开kdump的kernel中, 会有类似如下的启动log
1 2 3 4 5
|
... ... crashkernel reserved: 0x0000000310000000 - 0x0000000314000000 (64 MB) ... ... Kernel command line: console=ttyS0,115200 earlycon user_debug=31 crashkernel=64M@0x310000000 ... ...
|
这里给capture kernel配置的起始物理地址0x310000000, 大小为64MB.
具体在kernel代码中, 是通过reserve_crashkernel()来完成的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
|
static void __init reserve_crashkernel(void) { unsigned long long crash_base, crash_size; int ret;
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), &crash_size, &crash_base);
|
内核态是通过解析boot_command_line来获取crashkernel的起始地址和大小,并保存到crashk_res结构体中。
2.3.2 sys_kexec_load
kexec在用户态调用NR_kexec_load(104)的系统调用后,最终会执行到kernel态的sys_kexec_load
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, struct kexec_segment __user *, segments, unsigned long, flags) { int result;
|
sys_kexec_load()中, 主要干活的是do_kexec_load()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
static int do_kexec_load(unsigned long entry, unsigned long nr_segments, struct kexec_segment __user *segments, unsigned long flags) { struct kimage **dest_image, *image; unsigned long i; int ret;
if (flags & KEXEC_ON_CRASH) { dest_image = &kexec_crash_image; if (kexec_crash_image) arch_kexec_unprotect_crashkres(); } else { dest_image = &kexec_image; }
if (nr_segments == 0) {
|
kexec在内核态的信息存储在kexec_crash_image, 它是struct kimage *类型。
struct kimage结构体定义如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
struct kimage { kimage_entry_t head; kimage_entry_t *entry; kimage_entry_t *last_entry;
unsigned long start; struct page *control_code_page; struct page *swap_page;
unsigned long nr_segments; struct kexec_segment segment[KEXEC_SEGMENT_MAX];
struct list_head control_pages; struct list_head dest_pages; struct list_head unusable_pages;
|
kimage_alloc_init()会分配并初始化struct kimage结构体, 然后在kimage_load_segment()里将用户态准备好的5个segment加载到crash kernel
kexec_crash_image->start的值为kexec在用户态传入的entry, 即purgatory_start
2.3.3 kexec相关节点
/sys/kernel/kexec_loaded: 快速切换kernel是否打开
1 2 3 4 5 6
|
static ssize_t kexec_loaded_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", !!kexec_image); } KERNEL_ATTR_RO(kexec_loaded);
|
/sys/kernel/kexec_crash_loaded: kexec crash是否打开
1 2 3 4 5 6 7 8 9 10 11 12
|
static ssize_t kexec_crash_loaded_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", kexec_crash_loaded()); } KERNEL_ATTR_RO(kexec_crash_loaded);
int kexec_crash_loaded(void) { return !!kexec_crash_image; } EXPORT_SYMBOL_GPL(kexec_crash_loaded);
|
/sys/kernel/kexec_crash_size: 返回crash kernel大小
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
static ssize_t kexec_crash_size_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%zu\n", crash_get_memory_size()); }
size_t crash_get_memory_size(void) { size_t size = 0;
mutex_lock(&kexec_mutex); if (crashk_res.end != crashk_res.start) size = resource_size(&crashk_res); mutex_unlock(&kexec_mutex); return size; }
|
/sys/kernel/vmcoreinfo: 返回vmcoreinfo_note相关信息
1 2 3 4 5 6 7 8
|
static ssize_t vmcoreinfo_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { phys_addr_t vmcore_base = paddr_vmcoreinfo_note(); return sprintf(buf, "%pa %x\n", &vmcore_base, (unsigned int)sizeof(vmcoreinfo_note)); } KERNEL_ATTR_RO(vmcoreinfo);
|
3. kdump
3.1 触发kdump
当kernel panic后, 最终会走到 __crash_kexec
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
|
|
crash_setup_regs和machine_crash_shutdown用于保存当前的register信息到vmcore
crash_save_vmcoreinfo用于保存vmcore信息, 如crash time等
最后会进入machine_kexec
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
|
machine_kexec()函数完成的主要功能
- 将arm64_relocate_new_kernel拷贝到kimage的控制代码页中
- 调用cpu_soft_restart, 传入kimage的重要参数
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
static inline void __noreturn cpu_soft_restart(unsigned long el2_switch, unsigned long entry, unsigned long arg0, unsigned long arg1, unsigned long arg2) { typeof(__cpu_soft_restart) *restart;
el2_switch = el2_switch && !is_kernel_in_hyp_mode() && is_hyp_mode_available(); restart = (void *)virt_to_phys(__cpu_soft_restart);
cpu_install_idmap(); restart(el2_switch, entry, arg0, arg1, arg2); unreachable(); }
|
继续调用__cpu_soft_restart, 位于arch/arm64/kernel/relocate_kernel.S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
/* * __cpu_soft_restart(el2_switch, entry, arg0, arg1, arg2) - Helper for * cpu_soft_restart. * * @el2_switch: Flag to indicate a swich to EL2 is needed. * @entry: Location to jump to for soft reset. * arg0: First argument passed to @entry. * arg1: Second argument passed to @entry. * arg2: Third argument passed to @entry. * * Put the CPU into the same state as it would be if it had been reset, and * branch to what would be the reset vector. It must be executed with the * flat identity mapping. */ ENTRY(__cpu_soft_restart) /* Clear sctlr_el1 flags. */ mrs x12, sctlr_el1 ldr x13, =SCTLR_ELx_FLAGS bic x12, x12, x13 msr sctlr_el1, x12 isb
cbz x0, 1f // el2_switch? mov x0, #HVC_SOFT_RESTART hvc #0 // no return
1: mov x18, x1 // entry mov x0, x2 // arg0 mov x1, x3 // arg1 mov x2, x4 // arg2 br x18 ENDPROC(__cpu_soft_restart)
|
x18存储是的arm64_relocate_new_kernel, 位于arch/arm64/kernel/relocate_kernel.S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
/* * arm64_relocate_new_kernel - Put a 2nd stage image in place and boot it. * * The memory that the old kernel occupies may be overwritten when coping the * new image to its final location. To assure that the * arm64_relocate_new_kernel routine which does that copy is not overwritten, * all code and data needed by arm64_relocate_new_kernel must be between the * symbols arm64_relocate_new_kernel and arm64_relocate_new_kernel_end. The * machine_kexec() routine will copy arm64_relocate_new_kernel to the kexec * control_code_page, a special page which has been set up to be preserved * during the copy operation. */ ENTRY(arm64_relocate_new_kernel)
/* Setup the list loop variables. */ mov x17, x1 /* x17 = kimage_start */ mov x16, x0 /* x16 = kimage_head */ raw_dcache_line_size x15, x0 /* x15 = dcache line size */ mov x14, xzr /* x14 = entry ptr */ mov x13, xzr /* x13 = copy dest */
/* Clear the sctlr_el2 flags. */ mrs x0, CurrentEL cmp x0, #CurrentEL_EL2 b.ne 1f mrs x0, sctlr_el2 ldr x1, =SCTLR_ELx_FLAGS bic x0, x0, x1 msr sctlr_el2, x0 isb 1:
/* Check if the new image needs relocation. */ tbnz x16, IND_DONE_BIT, .Ldone
.Lloop: and x12, x16, PAGE_MASK /* x12 = addr */
/* Test the entry flags. */ .Ltest_source: tbz x16, IND_SOURCE_BIT, .Ltest_indirection
/* Invalidate dest page to PoC. */ mov x0, x13 add x20, x0, #PAGE_SIZE sub x1, x15, #1 bic x0, x0, x1 2: dc ivac, x0 add x0, x0, x15 cmp x0, x20 b.lo 2b dsb sy
mov x20, x13 mov x21, x12 copy_page x20, x21, x0, x1, x2, x3, x4, x5, x6, x7
/* dest += PAGE_SIZE */ add x13, x13, PAGE_SIZE b .Lnext
.Ltest_indirection: tbz x16, IND_INDIRECTION_BIT, .Ltest_destination
/* ptr = addr */ mov x14, x12 b .Lnext
.Ltest_destination: tbz x16, IND_DESTINATION_BIT, .Lnext
/* dest = addr */ mov x13, x12
.Lnext: /* entry = *ptr++ */ ldr x16, [x14], #8
/* while (!(entry & DONE)) */ tbz x16, IND_DONE_BIT, .Lloop
.Ldone: /* wait for writes from copy_page to finish */ dsb nsh ic iallu dsb nsh isb
/* Start new image. */ mov x0, xzr mov x1, xzr mov x2, xzr mov x3, xzr br x17
ENDPROC(arm64_relocate_new_kernel)
|
最后, 会跳转到kimage->start, 也就是kexec用户态的info.entry, 即purgatory_start
purgatory_start位于kexec-tools仓库的purgatory/arch/arm64/entry.S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
/* * ARM64 purgatory. */
.macro size, sym:req .size \sym, . - \sym .endm
.text
.globl purgatory_start purgatory_start:
adr x19, .Lstack mov sp, x19
bl purgatory
/* Start new image. */ ldr x17, arm64_kernel_entry ldr x0, arm64_dtb_addr mov x1, xzr mov x2, xzr mov x3, xzr br x17
size purgatory_start
.ltorg
.align 4 .rept 256 .quad 0 .endr .Lstack:
.data
.align 3
.globl arm64_kernel_entry arm64_kernel_entry: .quad 0 size arm64_kernel_entry
.globl arm64_dtb_addr arm64_dtb_addr: .quad 0 size arm64_dtb_addr
.end
|
purgatory_start主要完成两个功能
- 执行函数purgatory, 完成指定sha256_region的校验
- 跳转到capture kernel entry, 启动新的kernel
3.2 dump vmcore
3.2.1 elfcorehdr
kernel每次启动时, 都会去检查elfcorehdr是否存在。elfcorehdr主要是为ELF core header预留内存
kernel相关的实现在reserve_elfcorehdr()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
static void __init reserve_elfcorehdr(void) { of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
if (!elfcorehdr_size) return;
if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { pr_warn("elfcorehdr is overlapped\n"); return; }
memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", elfcorehdr_size >> 10, elfcorehdr_addr); }
|
其中, early_init_dt_scan_elfcorehdr()是要查找“linux,elfcorehdr”的属性. 这个属性是在执行kexec后,设置到capture kernel使用的dtb中。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
static int __init early_init_dt_scan_elfcorehdr(unsigned long node, const char *uname, int depth, void *data) { const __be32 *reg; int len;
if (depth != 1 || strcmp(uname, "chosen") != 0) return 0;
reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) return 1;
elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®);
return 1; }
|
ELF core header信息会存储到elfcorehdr_addr/elfcorehdr_size
3.2.2 vmcore_init
vmcore_init实现如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
|
vmcore_init主要实现了以下功能
-
is_vmcore_usable() 检查ELF core header是否存在,来决定vmcore是否可用
-
parse_crash_elf_headers()用于解析ELF core header
-
proc_create用于创建/proc/vmcore结点
is_vmcore_usable
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
|
|
- 将PT_NOTE的program header合并成一个,数据存放到elfnotes_buf
- 将PT_LOAD的promgram header信息存放到vmcore_list
vmcore_list是个双向链表, 每个结点是struct vmcore,定义如下
1 2 3 4 5 6
|
struct vmcore { struct list_head list; unsigned long long paddr; unsigned long long size; loff_t offset; };
|
vmcore header结构如下
proc_create
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
static inline struct proc_dir_entry *proc_create( const char *name, umode_t mode, struct proc_dir_entry *parent, const struct file_operations *proc_fops) { return proc_create_data(name, mode, parent, proc_fops, NULL); }
struct proc_dir_entry *proc_create_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct file_operations *proc_fops, void *data) { struct proc_dir_entry *pde; if ((mode & S_IFMT) == 0) mode |= S_IFREG;
if (!S_ISREG(mode)) { WARN_ON(1);
|
/proc/vmcore结点被创建后,
1 2 3 4 5
|
static const struct file_operations proc_vmcore_operations = { .read = read_vmcore, .llseek = default_llseek, .mmap = mmap_vmcore, };
|
当读取该结点时, 会调用到read_vmcore()->__read_vmcore()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
|
该函数会依次读取ELF header, elfnotes_buf和vmcore_list, 从而生成完整的vmcore文件。
3.2.3 导出vmcore
新的kernel启动后, 我们可以直接导出/proc/vmcore, 如在挂载文件系统后, 将/proc/vmcore压缩到本地硬盘。
1
|
$ tar -czf /mnt/vmcore.tar.gz /proc/vmcore
|
3.3 分析vmcore
/proc/vmcore导出后, 通常借助crash工具进行离线分析。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
|
$ crash vmlinux proc/vmcore
crash 7.2.5 Copyright (C) 2002-2019 Red Hat, Inc. Copyright (C) 2004, 2005, 2006, 2010 IBM Corporation Copyright (C) 1999-2006 Hewlett-Packard Co Copyright (C) 2005, 2006, 2011, 2012 Fujitsu Limited Copyright (C) 2006, 2007 VA Linux Systems Japan K.K. Copyright (C) 2005, 2011 NEC Corporation Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc. Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc. This program is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. Enter "help copying" to see the conditions. This program has absolutely no warranty. Enter "help warranty" for details. GNU gdb (GDB) 7.6 Copyright (C) 2013 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "--host=x86_64-unknown-linux-gnu --target=aarch64-elf-linux"... Redefine command "pstring"? (y or n) [answered Y; input not from terminal]
KERNEL: vmlinux DUMPFILE: proc/vmcore CPUS: 8 DATE: Mon Oct 28 21:44:54 2019 UPTIME: 00:29:23 LOAD AVERAGE: 0.00, 0.00, 0.00 TASKS: 176 NODENAME: chiptim RELEASE: 4.9.38-chip_v1.0.0-00253-gece0e28-dirty VERSION: #1 SMP Thu Aug 22 21:27:26 HKT 2019 MACHINE: aarch64 (unknown Mhz) MEMORY: 15.8 GB PANIC: "sysrq: SysRq : Trigger a crash" PID: 978 COMMAND: "bash" TASK: ffffffc2ea91bc00 [THREAD_INFO: ffffffc2ea91bc00] CPU: 0 STATE: TASK_RUNNING (SYSRQ)
crash> bt PID: 978 TASK: ffffffc2ea91bc00 CPU: 0 COMMAND: "bash" #0 [ffffffc2e5253880] machine_kexec at ffffff80080940e0 #1 [ffffffc2e52538e0] __crash_kexec at ffffff800811d430 #2 [ffffffc2e5253a30] __crash_kexec at ffffff800811d4e8 #3 [ffffffc2e5253a50] crash_kexec at ffffff800811d558 #4 [ffffffc2e5253a70] die at ffffff8008088db4 #5 [ffffffc2e5253ab0] __do_kernel_fault at ffffff8008099c64 #6 [ffffffc2e5253ae0] do_page_fault at ffffff8008097560 #7 [ffffffc2e5253b50] do_translation_fault at ffffff8008097668 #8 [ffffffc2e5253b60] do_mem_abort at ffffff8008081294 #9 [ffffffc2e5253d40] el1_ia at ffffff800808260c PC: ffffff80084915ac [sysrq_handle_crash+20] LR: ffffff800849202c [__handle_sysrq+284] SP: ffffffc2e5253d40 PSTATE: 00000145 X29: ffffffc2e5253d40 X28: ffffffc2ea91bc00 X27: ffffff8008852000 X26: 0000000000000040 X25: 0000000000000123 X24: 0000000000000015 X23: 0000000000000000 X22: 0000000000000007 X21: ffffff8008bb0da8 X20: 0000000000000063 X19: ffffff8008b6c000 X18: 0000000000000000 X17: 0000007f9d45b120 X16: ffffff80081d5700 X15: ffffffffffffffff X14: 0000000000000000 X13: 0000000000000007 X12: 0000000000000161 X11: 0000000000000006 X10: 0000000000000161 X9: 0000000000000001 X8: ffffff800839a988 X7: 0000000000000008 X6: ffffff8008db3c08 X5: 0000000000000000 X4: 0000000000000000 X3: 0000000000000000 X2: ffffffc2ffb0e700 X1: 0000000000000000 X0: 0000000000000001 #10 [ffffffc2e5253d80] write_sysrq_trigger at ffffff8008492494 #11 [ffffffc2e5253da0] proc_reg_write at ffffff8008234090 #12 [ffffffc2e5253dc0] __vfs_write at ffffff80081d3758 #13 [ffffffc2e5253e40] vfs_write at ffffff80081d4518 #14 [ffffffc2e5253e80] sys_write at ffffff80081d5740 #15 [ffffffc2e5253ec0] el0_svc_naked at ffffff8008082f2c PC: 0000007f9d4af078 LR: 0000007f9d45e2f8 SP: 0000007fdabec300 X29: 0000007fdabec300 X28: 0000007fdabec484 X27: 0000000000000000 X26: 0000000000000000 X25: 0000000000000000 X24: 0000000000000002 X23: 0000007f9d534638 X22: 0000000000000002 X21: 0000007f9d538480 X20: 0000000000516808 X19: 0000000000000002 X18: 0000000000000000 X17: 0000007f9d45b120 X16: 0000000000000000 X15: 0000000000000000 X14: 0000000000000000 X13: 0000000000000000 X12: 0000000000000000 X11: 0000000000000020 X10: 0000000000000000 X9: 0000000000000000 X8: 0000000000000040 X7: 0000000000000001 X6: 0000000000000063 X5: 5551000454000000 X4: 0000000000000888 X3: 0000000000000000 X2: 0000000000000002 X1: 0000000000516808 X0: 0000000000000001 ORIG_X0: 0000000000000001 SYSCALLNO: 40 PSTATE: 20000000
|
程序员自我修养(ID: dumphex)