coredump配置、产生、分析以及分析示例【转】
转自:https://www.cnblogs.com/arnoldlu/p/11160510.html
关键词:coredump、core_pattern、coredump_filter等等。
应用程序在运行过程中由于各种异常或者bug导致退出,在满足一定条件下产生一个core文件。
通常core文件包含了程序运行时内存、寄存器状态、堆栈指针、内存管理信息以及函数调用堆栈信息。
core就是程序当前工作转改存储生成的一个文件,通过工具分析这个文件,可以定位到程序异常退出的时候对应的堆栈调用等信息,找出问题点并解决。
1. 配置coredump
如果需要使用需要通过ulimit进行设置,可以通过ulimit -c查看当前系统是否支持coredump。如果为0,则表示coredump被关闭。
通过ulimit -c unlimited可以打开coredump。
coredump文件默认存储位置与可执行文件在同一目录下,文件名为core。
可以通过/proc/sys/kernel/core_pattern进行设置。
%p 出Core进程的PID %u 出Core进程的UID %s 造成Core的signal号 %t 出Core的时间,从1970-01-0100:00:00开始的秒数 %e 出Core进程对应的可执行文件名
通过echo "core-%e-%p-%s-%t" > /proc/sys/kernel/core_pattern。
在每个进程下都有coredump_filter节点/proc/<pid>/coredump_filter。
通过配置coredump_filter可以选择需在coredump的时候,将哪些内容dump到core文件中。
- (bit 0) anonymous private memory - (bit 1) anonymous shared memory - (bit 2) file-backed private memory - (bit 3) file-backed shared memory - (bit 4) ELF header pages in file-backed private memory areas (it is effective only if the bit 2 is cleared) - (bit 5) hugetlb private memory - (bit 6) hugetlb shared memory - (bit 7) DAX private memory - (bit 8) DAX shared memory
coredump_filter的默认值是0x33,也即发生coredump时会将所有anonymous内存、ELF头页面、hugetlb private memory内容保存。
coredump_filter可以被子进程继承,可以echo 0xXX > /proc/self/coredump_filter设置当前进程的coredump_filter。
static ssize_t proc_coredump_filter_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { ... ret = kstrtouint_from_user(buf, count, 0, &val);-------------------------将buf转换成val值。 if (ret < 0) return ret; ... for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { if (val & mask) set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);------------------将coredump_filter的值映射到mm->flags上,后续coredump时使用。 else clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); } ... }
其中MMF_DUMP_FILTER_SHIFT为2,所以flags和coredump_filter存在如下对应关系。
#define MMF_DUMP_ANON_PRIVATE 2 #define MMF_DUMP_ANON_SHARED 3 #define MMF_DUMP_MAPPED_PRIVATE 4 #define MMF_DUMP_MAPPED_SHARED 5 #define MMF_DUMP_ELF_HEADERS 6 #define MMF_DUMP_HUGETLB_PRIVATE 7 #define MMF_DUMP_HUGETLB_SHARED 8 #define MMF_DUMP_DAX_PRIVATE 9 #define MMF_DUMP_DAX_SHARED 10
2. coredump原理
在do_signal()中根据信号判断是否触发coredump,当然还跟coredump limit、mm->flags等等相关。
满足coredump条件后,由do_coredump()进行coredump文件生成,核心是由binfmt->core_dump()进行的。
2.1 触发coredump的条件?
在内核返回用户空间的时候,会调用do_signal()处理信号。
static void do_signal(struct pt_regs *regs, int syscall) { unsigned int retval = 0, continue_addr = 0, restart_addr = 0; struct ksignal ksig; ... if (get_signal(&ksig)) { ... } ... } int get_signal(struct ksignal *ksig) { ... for (;;) { struct k_sigaction *ka; ... signr = dequeue_signal(current, ¤t->blocked, &ksig->info); ... /* Trace actually delivered signals. */ trace_signal_deliver(signr, &ksig->info, ka); ... if (sig_kernel_coredump(signr)) { if (print_fatal_signals)------------------------------可以通过kernel.print-fatal-signals = 1进行设置,对应的节点是/proc/sys/kernel/print-fatal-signals。 print_fatal_signal(ksig->info.si_signo);----------打印当前信号及当前场景的栈信息。 proc_coredump_connector(current); do_coredump(&ksig->info); } ... } spin_unlock_irq(&sighand->siglock); ksig->sig = signr; return ksig->sig > 0; } #define sig_kernel_coredump(sig) siginmask(sig, SIG_KERNEL_COREDUMP_MASK)
#define SIG_KERNEL_COREDUMP_MASK (\
rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \
rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \
rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \
rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \
rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \
SIGEMT_MASK )
在get_signal()中,判断信号是否会导致coredump。这些信号包括SIGQUIT、SIGILL、SIGTRAP、SIGABRT、SIGFPE、SIGSEGV、SIGBUS、SIGSYS、SIGXCPU、SIGXFSZ。
“终止w/core”表示在进程当前工作目录的core文件中复制了该进程的存储图像(该文件名为core,由此可以看出这种功能很久之前就是UNIX功能的一部分)。
void proc_coredump_connector(struct task_struct *task) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_COREDUMP; ev->event_data.coredump.process_pid = task->pid; ev->event_data.coredump.process_tgid = task->tgid; memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); }
2.2 coredump如何生成?
void do_coredump(const siginfo_t *siginfo) { struct core_state core_state; struct core_name cn; struct mm_struct *mm = current->mm; struct linux_binfmt * binfmt; const struct cred *old_cred; struct cred *cred; int retval = 0; int ispipe; struct files_struct *displaced; /* require nonrelative corefile path and be extra careful */ bool need_suid_safe = false; bool core_dumped = false; static atomic_t core_dump_count = ATOMIC_INIT(0); struct coredump_params cprm = { .siginfo = siginfo, .regs = signal_pt_regs(), .limit = rlimit(RLIMIT_CORE),-----------------------------------获取系统对于coredump的限制。 /* * We must use the same mm->flags while dumping core to avoid * inconsistency of bit flags, since this flag is not protected * by any locks. */ .mm_flags = mm->flags, }; audit_core_dumps(siginfo->si_signo); binfmt = mm->binfmt;------------------------------------------------获取当前进程所使用的程序加载器。 if (!binfmt || !binfmt->core_dump) goto fail; if (!__get_dumpable(cprm.mm_flags))---------------------------------从当前进程的mm->flags中取低两位判断是否可以coredump,SUID_DUMP_DISABLE(0)不可以,其他情况都可以。 goto fail; cred = prepare_creds(); if (!cred) goto fail; /* * We cannot trust fsuid as being the "true" uid of the process * nor do we know its entire history. We only know it was tainted * so we dump it as root in mode 2, and only into a controlled * environment (pipe handler or fully qualified path). */ if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {--------------区分SUID_DUMP_USER和SUID_DUMP_ROOT。 /* Setuid core dump mode */ cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ need_suid_safe = true; } retval = coredump_wait(siginfo->si_signo, &core_state); if (retval < 0) goto fail_creds; old_cred = override_creds(cred); ispipe = format_corename(&cn, &cprm);-------------------------------根据core_pattern判断是否是ispipe,然后根据core_pattern的设置生成coredump文件名称。 if (ispipe) {-------------------------------------------------------通过管道处理coredump信息。 int dump_count; char **helper_argv; struct subprocess_info *sub_info; if (ispipe < 0) { printk(KERN_WARNING "format_corename failed\n"); printk(KERN_WARNING "Aborting core\n"); goto fail_unlock; } if (cprm.limit == 1) { printk(KERN_WARNING "Process %d(%s) has RLIMIT_CORE set to 1\n", task_tgid_vnr(current), current->comm); printk(KERN_WARNING "Aborting core\n"); goto fail_unlock; } cprm.limit = RLIM_INFINITY; dump_count = atomic_inc_return(&core_dump_count); if (core_pipe_limit && (core_pipe_limit < dump_count)) { printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", task_tgid_vnr(current), current->comm); printk(KERN_WARNING "Skipping core dump\n"); goto fail_dropcount; } helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);----------将cn.corename参数进行拆分。 if (!helper_argv) { printk(KERN_WARNING "%s failed to allocate memory\n", __func__); goto fail_dropcount; } retval = -ENOMEM; sub_info = call_usermodehelper_setup(helper_argv[0], helper_argv, NULL, GFP_KERNEL, umh_pipe_setup, NULL, &cprm);---------------------通过usermodehelper调用用户空间的helper_argv[0]程序进行core_pattern。 if (sub_info) retval = call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);-----------------------------UMH_WAIT_EXEC表示在内核exec用户空间程序之后就退出,此时用户空间程序就通过pipe等待接收数据。 argv_free(helper_argv); if (retval) { printk(KERN_INFO "Core dump to |%s pipe failed\n", cn.corename); goto close_fail; } } else { struct inode *inode; int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | O_LARGEFILE | O_EXCL; if (cprm.limit < binfmt->min_coredump) goto fail_unlock; if (need_suid_safe && cn.corename[0] != '/') { printk(KERN_WARNING "Pid %d(%s) can only dump core "\ "to fully qualified path!\n", task_tgid_vnr(current), current->comm); printk(KERN_WARNING "Skipping core dump\n"); goto fail_unlock; } if (!need_suid_safe) { mm_segment_t old_fs; old_fs = get_fs(); set_fs(KERNEL_DS); /* * If it doesn't exist, that's fine. If there's some * other problem, we'll catch it at the filp_open(). */ (void) sys_unlink((const char __user *)cn.corename); set_fs(old_fs); } if (need_suid_safe) {---------------------------------------------创建coredump文件。 struct path root; task_lock(&init_task); get_fs_root(init_task.fs, &root); task_unlock(&init_task); cprm.file = file_open_root(root.dentry, root.mnt, cn.corename, open_flags, 0600); path_put(&root); } else { cprm.file = filp_open(cn.corename, open_flags, 0600); } if (IS_ERR(cprm.file)) goto fail_unlock; inode = file_inode(cprm.file); if (inode->i_nlink > 1)------------------------------------------coredummp文件不能有多个硬链接。 goto close_fail; if (d_unhashed(cprm.file->f_path.dentry)) goto close_fail; if (!S_ISREG(inode->i_mode))--------------------------------------coredump文件必须为普通文件。 goto close_fail; if (!uid_eq(inode->i_uid, current_fsuid())) goto close_fail; if ((inode->i_mode & 0677) != 0600) goto close_fail; if (!(cprm.file->f_mode & FMODE_CAN_WRITE))-----------------------coredump文件必须可写。 goto close_fail; if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) goto close_fail; } /* get us an unshared descriptor table; almost always a no-op */ retval = unshare_files(&displaced); if (retval) goto close_fail; if (displaced) put_files_struct(displaced); if (!dump_interrupted()) { file_start_write(cprm.file); core_dumped = binfmt->core_dump(&cprm);---------------------------调用对应程序加载器的core_dump进行处理,将数据写入到cprm.file中。 file_end_write(cprm.file); } if (ispipe && core_pipe_limit) wait_for_dump_helpers(cprm.file); close_fail: if (cprm.file) filp_close(cprm.file, NULL); fail_dropcount: if (ispipe) atomic_dec(&core_dump_count); fail_unlock: kfree(cn.corename); coredump_finish(mm, core_dumped); revert_creds(old_cred); fail_creds: put_cred(cred); fail: return; }
format_corename()根据core_pattern中的设置,生成coredump文件名。并且判断coredump文件生成方式,ispipe为真则通过管道传输给其他应用处理;否则直接保存成文件。
static int format_corename(struct core_name *cn, struct coredump_params *cprm) { const struct cred *cred = current_cred(); const char *pat_ptr = core_pattern; int ispipe = (*pat_ptr == '|');------------------------------------------|表示通过pipe处理coredump文件。 int pid_in_pattern = 0; int err = 0; cn->used = 0; cn->corename = NULL; if (expand_corename(cn, core_name_size)) return -ENOMEM; cn->corename[0] = '\0'; if (ispipe) ++pat_ptr; /* Repeat as long as we have more pattern to process and more output space */ while (*pat_ptr) { if (*pat_ptr != '%') { err = cn_printf(cn, "%c", *pat_ptr++); } else { switch (*++pat_ptr) { /* single % at the end, drop that */ case 0: goto out; /* Double percent, output one percent */ case '%': err = cn_printf(cn, "%c", '%'); break; /* pid */ case 'p': pid_in_pattern = 1; err = cn_printf(cn, "%d", task_tgid_vnr(current));-------------------------%p表示记录当前进程组的pid。 break; /* global pid */ case 'P':-------------------------------------------------------%P表示记录当前进程组的pid。 err = cn_printf(cn, "%d", task_tgid_nr(current)); break; case 'i': err = cn_printf(cn, "%d", task_pid_vnr(current));--------------------------%i表示记录当前线程的pid。 break; case 'I':------------------------------------------------------%I表示记录当前线程的pid。 err = cn_printf(cn, "%d", task_pid_nr(current)); break; /* uid */ case 'u':-------------------------------------------------------%u表示当前用户id。 err = cn_printf(cn, "%u", from_kuid(&init_user_ns, cred->uid)); break; /* gid */ case 'g':-------------------------------------------------------%g表示group id。 err = cn_printf(cn, "%u", from_kgid(&init_user_ns, cred->gid)); break; case 'd': err = cn_printf(cn, "%d", __get_dumpable(cprm->mm_flags));------------------------%d表示dump的用户类型:SUID_DUMP_DISABLE/SUID_DUMP_USER/SUID_DUMP_ROOT。 break; /* signal that caused the coredump */ case 's': err = cn_printf(cn, "%d", cprm->siginfo->si_signo);----------------------------%s记录产生coredump的信号。 break; /* UNIX time of coredump */ case 't': { time64_t time; time = ktime_get_real_seconds(); err = cn_printf(cn, "%lld", time);---------------------------%t记录产生coredump的时间。 break; } /* hostname */ case 'h':--------------------------------------------------------%h记录主机名。 down_read(&uts_sem); err = cn_esc_printf(cn, "%s", utsname()->nodename); up_read(&uts_sem); break; /* executable */ case 'e': err = cn_esc_printf(cn, "%s", current->comm);----------------%e记录进程中comm名称。 break; case 'E': err = cn_print_exe_file(cn);---------------------------------%E记录可执行文件名称。 break; /* core limit size */ case 'c': err = cn_printf(cn, "%lu", rlimit(RLIMIT_CORE));------------------------------%c记录coredump的limit值。 break; default: break; } ++pat_ptr; } if (err) return err; } out: if (!ispipe && !pid_in_pattern && core_uses_pid) { err = cn_printf(cn, ".%d", task_tgid_vnr(current)); if (err) return err; } return ispipe; }
所以core_%e(%I)_%E(%p)_sig(%s)_time(%t)写入到core_pattern表示core_线程名(线程pid)_进程名(进程pid)_sig(信号值)_time(异常时间点)。
umh_pipe_setup()创建了一个管道,这个管道给内核coredump和用户空间程序搭建了一个桥梁。
内核coredump的数据写入管道,用户空间程序在管道另一端接收进行处理。
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) { struct file *files[2]; struct coredump_params *cp = (struct coredump_params *)info->data; int err = create_pipe_files(files, 0);----------------------------创建一个pipe管道,files[0]是管道的读端;files[1]是管道的写端。 if (err) return err; cp->file = files[1];----------------------------------------------cp->file指向管道的写端,后面coredump写入这里。 err = replace_fd(0, files[0], 0);---------------------------------这里将files[0]作为usermodehelper执行程序的输入,coredump的数据通过管道给用户空间程序接收。 fput(files[0]); /* and disallow core files too */ current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; return err; } int create_pipe_files(struct file **res, int flags) { int err; struct inode *inode = get_pipe_inode(); struct file *f; struct path path; static struct qstr name = { .name = "" }; if (!inode) return -ENFILE; err = -ENOMEM; path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name); if (!path.dentry) goto err_inode; path.mnt = mntget(pipe_mnt); d_instantiate(path.dentry, inode); f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);------------------------创建管道的写一端。 if (IS_ERR(f)) { err = PTR_ERR(f); goto err_dentry; } f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)); f->private_data = inode->i_pipe; res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);--------------------创建管道的读一端。 if (IS_ERR(res[0])) { err = PTR_ERR(res[0]); goto err_file; } path_get(&path); res[0]->private_data = inode->i_pipe; res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK); res[1] = f; return 0; err_file: put_filp(f); err_dentry: free_pipe_info(inode->i_pipe); path_put(&path); return err; err_inode: free_pipe_info(inode->i_pipe); iput(inode); return err; } int replace_fd(unsigned fd, struct file *file, unsigned flags) { int err; struct files_struct *files = current->files; if (!file) return __close_fd(files, fd); if (fd >= rlimit(RLIMIT_NOFILE)) return -EBADF; spin_lock(&files->file_lock); err = expand_files(files, fd); if (unlikely(err < 0)) goto out_unlock; return do_dup2(files, file, fd, flags); out_unlock: spin_unlock(&files->file_lock); return err; }
linux内核支持多种linux_binfmt,这里最常用的是ELF。
所以do_coredump()中的binfmt即为elf_format,binfmt->core_dump()即为elf_coredump()。
elf_core_dump()将当前进程的vma区域进行dummp,附加相关的头信息等。保存成文件。
static struct linux_binfmt elf_format = { .module = THIS_MODULE, .load_binary = load_elf_binary, .load_shlib = load_elf_library, .core_dump = elf_core_dump, .min_coredump = ELF_EXEC_PAGESIZE, }; static int elf_core_dump(struct coredump_params *cprm) { int has_dumped = 0; mm_segment_t fs; int segs, i; size_t vma_data_size = 0; struct vm_area_struct *vma, *gate_vma; struct elfhdr *elf = NULL; loff_t offset = 0, dataoff; struct elf_note_info info = { }; struct elf_phdr *phdr4note = NULL; struct elf_shdr *shdr4extnum = NULL; Elf_Half e_phnum; elf_addr_t e_shoff; elf_addr_t *vma_filesz = NULL; elf = kmalloc(sizeof(*elf), GFP_KERNEL);-----------------------申请存放elfhdr空间。 if (!elf) goto out; segs = current->mm->map_count;---------------------------------通过current->mm->map_count得到当前进程已映射的内存段数量。 segs += elf_core_extra_phdrs();--------------------------------增加附加段数量。 gate_vma = get_gate_vma(current->mm);--------------------------增加一个segment给vma使用。 if (gate_vma != NULL) segs++; /* for notes section */ segs++;--------------------------------------------------------保留一个segment给PT_NOTE使用。 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid * this, kernel supports extended numbering. Have a look at * include/linux/elf.h for further information. */ e_phnum = segs > PN_XNUM ? PN_XNUM : segs; /* * Collect all the non-memory information about the process for the * notes. This also sets up the file header. */ if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))-----fill_note_info()填充info信息。 goto cleanup; has_dumped = 1; fs = get_fs(); set_fs(KERNEL_DS);------------------------------------------------------在内核中操作用户空间文件,需要将地址方位扩大。具体参见《Linux内核访问用户空间文件:get_fs()/set_fs()的使用》 offset += sizeof(*elf); /* Elf header */ offset += segs * sizeof(struct elf_phdr); /* Program headers */ /* Write notes phdr entry */ { size_t sz = get_note_info_size(&info); sz += elf_coredump_extra_notes_size(); phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); if (!phdr4note) goto end_coredump; fill_elf_note_phdr(phdr4note, sz, offset); offset += sz; } dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL); if (!vma_filesz) goto end_coredump; for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; vma = next_vma(vma, gate_vma)) { unsigned long dump_size; dump_size = vma_dump_size(vma, cprm->mm_flags);----------------------mm_flags对应coredump_filter,用于确定哪些vma需要dump,哪些忽略掉。 vma_filesz[i++] = dump_size; vma_data_size += dump_size; } offset += vma_data_size; offset += elf_core_extra_data_size(); e_shoff = offset; if (e_phnum == PN_XNUM) { shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); if (!shdr4extnum) goto end_coredump; fill_extnum_info(elf, shdr4extnum, e_shoff, segs); } offset = dataoff; if (!dump_emit(cprm, elf, sizeof(*elf)))---------------------------写入elf头到cprm->file文件,在使用pipe的情况下,这些数据都交给usermodehelper启动的用户空间程序进行处理。 goto end_coredump; if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))---------------写入phdr4node到cprm->file文件。 goto end_coredump; /* Write program headers for segments dump */ for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; vma = next_vma(vma, gate_vma)) { struct elf_phdr phdr; phdr.p_type = PT_LOAD; phdr.p_offset = offset; phdr.p_vaddr = vma->vm_start; phdr.p_paddr = 0; phdr.p_filesz = vma_filesz[i++]; phdr.p_memsz = vma->vm_end - vma->vm_start; offset += phdr.p_filesz; phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; if (vma->vm_flags & VM_WRITE) phdr.p_flags |= PF_W; if (vma->vm_flags & VM_EXEC) phdr.p_flags |= PF_X; phdr.p_align = ELF_EXEC_PAGESIZE; if (!dump_emit(cprm, &phdr, sizeof(phdr))) goto end_coredump; } if (!elf_core_write_extra_phdrs(cprm, offset)) goto end_coredump; /* write out the notes section */ if (!write_note_info(&info, cprm)) goto end_coredump; if (elf_coredump_extra_notes_write(cprm)) goto end_coredump; /* Align to page */ if (!dump_skip(cprm, dataoff - cprm->pos)) goto end_coredump; for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; vma = next_vma(vma, gate_vma)) { unsigned long addr; unsigned long end; end = vma->vm_start + vma_filesz[i++]; for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { struct page *page; int stop; page = get_dump_page(addr); if (page) { void *kaddr = kmap(page); stop = !dump_emit(cprm, kaddr, PAGE_SIZE); kunmap(page); put_page(page); } else stop = !dump_skip(cprm, PAGE_SIZE); if (stop) goto end_coredump; } } dump_truncate(cprm); if (!elf_core_write_extra_data(cprm)) goto end_coredump; if (e_phnum == PN_XNUM) { if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) goto end_coredump; } end_coredump: set_fs(fs); cleanup: free_note_info(&info); kfree(shdr4extnum); kfree(vma_filesz); kfree(phdr4note); kfree(elf); out: return has_dumped; } int dump_emit(struct coredump_params *cprm, const void *addr, int nr) { struct file *file = cprm->file; loff_t pos = file->f_pos; ssize_t n; if (cprm->written + nr > cprm->limit) return 0; while (nr) { if (dump_interrupted()) return 0; n = __kernel_write(file, addr, nr, &pos); if (n <= 0) return 0; file->f_pos = pos; cprm->written += n; cprm->pos += n; nr -= n; } return 1; }
判断一个文件是否是coredump文件,可以通过readelf命令,如果类型是CORE(Core file)。
或者通过file命令进行判断。
参考文档:《Core file 文件格式(Linux Coredump文件结构)》,GDB解析coredump文件参考《GDB如何从Coredump文件恢复动态库信息》。
3. coredump案例
下面创建一个简单产生coredump的示例,然后通过gdb进行分析。
3.1 coredump示例
#include <stddef.h> #include <stdio.h> #include <stdlib.h> #include <string.h> int myfunc(int i) { *(int*)(NULL) = i; /* line 7 */ return i - 1; } int main(int argc, char **argv) { /* Setup some memory. */ char data_ptr[] = "string in data segment"; char *mmap_ptr; char *text_ptr = "string in text segment"; (void)argv; mmap_ptr = (char *)malloc(sizeof(data_ptr) + 1); strcpy(mmap_ptr, data_ptr); mmap_ptr[10] = 'm'; mmap_ptr[11] = 'm'; mmap_ptr[12] = 'a'; mmap_ptr[13] = 'p'; printf("text addr: %p\n", text_ptr); printf("data addr: %p\n", data_ptr); printf("mmap addr: %p\n", mmap_ptr); /* Call a function to prepare a stack trace. */ return myfunc(argc); }
使用如下命令编译,-ggdb3表示产生更多适合GDB的调试信息,3是最高等级。
gcc -ggdb3 -std=c99 -Wall -Wextra -pedantic -o main.out main.c
3.2 coredump+gdb分析
通过ulimit -c unlimited打开coredump功能,执行./main.out产生core文件。
text addr: 0x4007d4 data addr: 0x7ffff28fdc30 mmap addr: 0x10bb010 Segmentation fault (core dumped)
通过gdb ./main.out core,显示了进程由于什么信号导致的coredump(SIGSEGV)?在哪个文件(main.cc)?在哪个函数(myfunc())?具体位置的代码?等等信息。
GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.5) 7.11.1... Reading symbols from ./main.out...done. [New LWP 8651] Core was generated by `./main.out'. Program terminated with signal SIGSEGV, Segmentation fault. #0 0x0000000000400635 in myfunc (i=1) at main.c:7 7 *(int*)(NULL) = i; /* line 7 */
关于core+gdb更详细的分析方法可以参考《通过core+gdb离线分析》,在分析过程中需要加载动态库可以参考《GDB动态库搜索路径》。
4. coredump使用优化(适用嵌入式)
在/etc/profile中,打开对coredump的配置以及对core_pattern进行配置:
sysctl -p -q -e ulimit -c unlimited
配置/etc/sysctl.conf文件:
kernel.core_pattern=|/usr/bin/coredump_helper.sh core_%e_%I_%p_sig_%s_time_%t.gz kernel.core_uses_pid=1
增加处理coredump文件的脚本:
#!/bin/sh if [ ! -d "/var/coredump" ];then mkdir -p /var/coredump fi gzip > "/var/coredump/$1"
最终在/var/coredump目录下生成core_<线程名>_<线程ID>_<进程ID>_sig_<信号值>_time_<coredump时间>.gz文件。
5. 小结
至此大概总结了,对coredump的设置(ulimit/core_pattern/coredump_filter)?触发coredump的条件(SIG_KERNEL_COREDUMP_MASK )?coredump生成core文件流程(do_coredump())?gdb如何识别core文件(《GDB如何从Coredump文件恢复动态库信息》)?如何通过gdb分析core文件发现问题(gdb->backtrace)?