CFS完全公平调度算法 - per entity load tracking 几个重要的函数分析【转】

转自:https://blog.csdn.net/helloanthea/article/details/30081627?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.channel_param

kernel/sched/fair.c 

负载衰减计算函数decay_load()
  1.  
    /*
  2.  
    * We choose a half-life close to 1 scheduling period.
  3.  
    * Note: The tables below are dependent on this value.
  4.  
    */
  5.  
    #define LOAD_AVG_PERIOD 32
  6.  
    #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  7.  
    #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  8.  
     
  9.  
    /* Precomputed fixed inverse multiplies for multiplication by y^n */
  10.  
    static const u32 runnable_avg_yN_inv[] = {
  11.  
    0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  12.  
    0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  13.  
    0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  14.  
    0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  15.  
    0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  16.  
    0x85aac367, 0x82cd8698,
  17.  
    };
  18.  
     
  19.  
    /*
  20.  
    * Approximate:
  21.  
    * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  22.  
    */
  23.  
    //负载衰减计算,val * y^n, 将val的值衰减n次并返回(其中y^32 ~= 0.5,也就是约定了32ms之前调度实体的负载,对调度实体的累计负载的影响因子为0.5)
  24.  
    static __always_inline u64 decay_load(u64 val, u64 n)
  25.  
    {
  26.  
    unsigned int local_n;
  27.  
     
  28.  
    if (!n)
  29.  
    return val;
  30.  
    else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  31.  
    return 0;
  32.  
     
  33.  
    /* after bounds checking we can collapse to 32-bit */
  34.  
    local_n = n;
  35.  
     
  36.  
    /*
  37.  
    * As y^PERIOD = 1/2, we can combine
  38.  
    * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
  39.  
    * With a look-up table which covers k^n (n<PERIOD)
  40.  
    *
  41.  
    * To achieve constant time decay_load.
  42.  
    */
  43.  
    if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  44.  
    val >>= local_n / LOAD_AVG_PERIOD;
  45.  
    local_n %= LOAD_AVG_PERIOD;
  46.  
    }
  47.  
     
  48.  
    val *= runnable_avg_yN_inv[local_n];
  49.  
    /* We don't use SRR here since we always want to round down. */
  50.  
    return val >> 32;
  51.  
    }

 

连续n个整周期的负载累计贡献值__compute_runnable_contrib()
  1.  
    /*
  2.  
    * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  3.  
    * over-estimates when re-combining.
  4.  
    */
  5.  
    static const u32 runnable_avg_yN_sum[] = {
  6.  
    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  7.  
    9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  8.  
    17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  9.  
    };
  10.  
     
  11.  
    /*
  12.  
    * For updates fully spanning n periods, the contribution to runnable
  13.  
    * average will be: \Sum 1024*y^n
  14.  
    *
  15.  
    * We can compute this reasonably efficiently by combining:
  16.  
    * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  17.  
    */
  18.  
    //为了方便计算连续n个整周期的负载累计贡献值,封装了该函数,计算1024*(y + y^2 + y^3 + …… +y^n)
  19.  
    static u32 __compute_runnable_contrib(u64 n)
  20.  
    {
  21.  
    u32 contrib = 0;
  22.  
     
  23.  
    if (likely(n <= LOAD_AVG_PERIOD)) //如果n<=32,直接从表runnable_avg_yN_sum中取已经计算好的1024*(y + y^2 + y^3 + …… +y^n)
  24.  
    return runnable_avg_yN_sum[n];
  25.  
    else if (unlikely(n >= LOAD_AVG_MAX_N)) //如果n>=345,直接返回1024*(y + y^2 + y^3 + …… +y^n)的极限值47742。
  26.  
    return LOAD_AVG_MAX;
  27.  
     
  28.  
    /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  29.  
    //如果32<=n<=345,每递进32个衰减周期,负载贡献值衰减一半(y^32 = 1/2),并累加。
  30.  
    do {
  31.  
    contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  32.  
    contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  33.  
     
  34.  
    n -= LOAD_AVG_PERIOD;
  35.  
    } while (n > LOAD_AVG_PERIOD);
  36.  
     
  37.  
    contrib = decay_load(contrib, n);// 最后衰减n中不能凑成32个衰减周期的剩余周期数
  38.  
    return contrib + runnable_avg_yN_sum[n];// n中不能凑成32个衰减周期的剩余周期数,单独计算衰减,并累加
  39.  
    }



更新调度实体的累计负载平均值__update_entity_runnable_avg()

 

    1.  
      /*
    2.  
      * We can represent the historical contribution to runnable average as the
    3.  
      * coefficients of a geometric series. To do this we sub-divide our runnable
    4.  
      * history into segments of approximately 1ms (1024us); label the segment that
    5.  
      * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
    6.  
      * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
    7.  
      * p0 p1 p2
    8.  
      * (now) (~1ms ago) (~2ms ago)
    9.  
      *
    10.  
      * Let u_i denote the fraction of p_i that the entity was runnable.
    11.  
      *
    12.  
      * We then designate the fractions u_i as our co-efficients, yielding the
    13.  
      * following representation of historical load:
    14.  
      * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
    15.  
      *
    16.  
      * We choose y based on the with of a reasonably scheduling period, fixing:
    17.  
      * y^32 = 0.5
    18.  
      *
    19.  
      * This means that the contribution to load ~32ms ago (u_32) will be weighted
    20.  
      * approximately half as much as the contribution to load within the last ms
    21.  
      * (u_0).
    22.  
      *
    23.  
      * When a period "rolls over" and we have new u_0`, multiplying the previous
    24.  
      * sum again by y is sufficient to update:
    25.  
      * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
    26.  
      * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
    27.  
      */
    28.  
      //更新调度实体的累计负载平均值
    29.  
      static __always_inline int __update_entity_runnable_avg(u64 now,
    30.  
      struct sched_avg *sa,
    31.  
      int runnable)
    32.  
      {
    33.  
      u64 delta, periods;
    34.  
      u32 runnable_contrib;
    35.  
      int delta_w, decayed = 0;
    36.  
       
    37.  
      delta = now - sa->last_runnable_update;//delta,本次更新累计负载与上次更新累计负载的时间差,单位ns。
    38.  
      /*
    39.  
      * This should only happen when time goes backwards, which it
    40.  
      * unfortunately does during sched clock init when we swap over to TSC.
    41.  
      */
    42.  
      if ((s64)delta < 0) {//如果delta为负,不需要更新累计负载,将累计负载更新时间刷新成最新时间,并返回0
    43.  
      sa->last_runnable_update = now;
    44.  
      return 0;
    45.  
      }
    46.  
       
    47.  
      /*
    48.  
      * Use 1024ns as the unit of measurement since it's a reasonable
    49.  
      * approximation of 1us and fast to compute.
    50.  
      */
    51.  
      delta >>= 10;//delta除以1024,将ns换算为us,用右移是为了提高效率。
    52.  
      if (!delta)//如果delta为0us,时间太短,则直接返回0,且不需要刷新累计负载更新时间。
    53.  
      return 0;
    54.  
      sa->last_runnable_update = now;//将累计负载更新时间刷新成最新时间。
    55.  
       
    56.  
      /* delta_w is the amount already accumulated against our next period */
    57.  
      delta_w = sa->runnable_avg_period % 1024;//delta_w为上次更新调度实体的累计负载runnable_avg_period时,不能凑成1024us的剩余us,对应图二的红色部分,该部分已经被计算过累计负载。
    58.  
      if (delta + delta_w >= 1024) {//如果delta与delta_w的和大于等于1024us,说明至少一个周期(1024us)已经过去了
    59.  
      /* period roll-over */
    60.  
      decayed = 1; //将衰减标志decayed置位
    61.  
       
    62.  
      /*
    63.  
      * Now that we know we're crossing a period boundary, figure
    64.  
      * out how much from delta we need to complete the current
    65.  
      * period and accrue it.
    66.  
      */
    67.  
      delta_w = 1024 - delta_w; //这里是计算上次更新累计负载时,未被计算的剩余部分的累计负载,也就是(1024-delta_w),对应图二的黄色部分
    68.  
      if (runnable)
    69.  
      sa->runnable_avg_sum += delta_w;//如果是可运行的调度实体,才累加runnable_avg_sum
    70.  
      sa->runnable_avg_period += delta_w;//累加runnable_avg_period
    71.  
       
    72.  
      delta -= delta_w;//计算除了(1024-delta_w)以外的剩余的delta
    73.  
       
    74.  
      /* Figure out how many additional periods this update spans */
    75.  
      periods = delta / 1024;//计算本次更新与上次更新之间,总共跨越了几个周期,也就是有多少个周期(1024us)调度实体是一直运行的,对应图二的蓝色部分。
    76.  
      delta %= 1024;//本次更新中不能凑成1024us的剩余us,类似于上次更新中的delta_w,对应图二的绿色部分。
    77.  
       
    78.  
      //分别对调度实体的runnable_avg_sum和runnable_avg_period执行衰减计算,即分别乘以y^(periods+1)
    79.  
      sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
    80.  
      periods + 1);
    81.  
      sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
    82.  
      periods + 1);
    83.  
       
    84.  
      /* Efficiently calculate \sum (1..n_period) 1024*y^i */
    85.  
      runnable_contrib = __compute_runnable_contrib(periods);//调度实体在periods个周期(1024us)是一直运行的(u_i=1),所以直接计算y+y^2+y^3+……+y^period的累加值。
    86.  
      if (runnable)
    87.  
      sa->runnable_avg_sum += runnable_contrib;
    88.  
      sa->runnable_avg_period += runnable_contrib;
    89.  
      }
    90.  
       
    91.  
      //如果delta与delta_w的和小于1024us,说明上次更新和这次更新还在同一个衰减周期(1024us)内,不需要执行衰减计算,直接将时间差加到runnable_avg_sum和runnable_avg_period即可。
    92.  
      /* Remainder of delta accrued against u_0` */
    93.  
      if (runnable)
    94.  
      sa->runnable_avg_sum += delta;//如果是可运行的调度实体,才累加runnable_avg_sum
    95.  
      sa->runnable_avg_period += delta;//累加runnable_avg_period
    96.  
       
    97.  
      return decayed;//返回衰减标志
    98.  
posted @ 2020-11-12 14:54  Sky&Zhang  阅读(283)  评论(0编辑  收藏  举报