Cassandra操作入门

1. Cassandra是什么

Apache Cassandra是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存收件箱等简单格式数据,集Google BigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身。Facebook于2008将 Cassandra 开源,此后,由于Cassandra良好的可扩放性,被Digg、Twitter等知名Web 2.0网站所采纳,成为了一种流行的分布式结构化数据存储方案。

详细参看:http://zh.wikipedia.org/wiki/Cassandra

 

2. 下载、安装、运行服务端及客户端

下载:http://cassandra.apache.org/download/

安装:因Cassandra是JAVA编写,所以理论上是在具有JDK6及上版本的机器上都可以运行,官方测试的和JDK有OpenJDK 及Sun的JDK。 

运行服务端:在WINDOWS上可不用修改任何文件,直接运行bin/cassandra.bat;

            在Linux上,如果不修改配置文件,一定要保证目录“/var/log/cassandra”及“/var/lib/cassandra”是必须存在的,并且拥有权限,直接运行bin/cassandra

运行客户端:

    在windows上面运行bin/cassandra-cli.bat,linux上面运行bin/cassandra-cli,没有报错且出现类似这样的提示符就说明成功连接上了:

[default]

3、配置文件

conf/cassandra.yaml:这个是核心配置文件,包括各种策略、数据日志及cache data存放的地方等,如数据文件的配置项“data_file_directories”,上面我们是直接启动了cassandra,默认在的日志及数据存放目录分别是:

Windows:

在Cassandra运行的所在盘的根目录下面,会有一个var这样的目录,然后下面分别会有log、lib目录分别用于存放数据及日志;

Linux:

存放日志及数据的目录是“/var/log/cassandra”及“/var/lib/cassandra”

详细的配置项就自己看了。

 

4、操作示例

4.1 简介

Cassandra的操作命令,类似于我们平时操作的关系数据库一样,对熟悉MYSQL的朋友来说,看到的都会是一些熟悉的身影,如创建是用create,删除是用drop,更新是用update,查看对象是用show,要使用某个列族长则用use,非常的好记。如果是第一次使用,建设还是看这个官方的入门操作文档吧:http://wiki.apache.org/cassandra/GettingStarted

4.2 创建keyspace

Cassandra的存储抽象结构和数据库一样,keyspace对应关系数据库的database或schema,column family对应于table,所以我们现在就和操作关系数据库一样,在连上去过后的第一步,就是创建一个keyspace(注:如果不知道命令如何使用,打入help命令,很多东西都可以看到如何使用):

 

create keyspace myspace
	with placement_strategy='org.apache.cassandra.locator.SimpleStrategy'
	and strategy_options={replication_factor:1};
第一行很简单理解,就是创建一个名为myspace的keyspace,第二行就是存储策略,这里共有三种存储策略,第三行就是指定的存储策略的参数选项了。三种存储策略分别是:

 

 

org.apache.cassandra.locator.SimpleStrategy
org.apache.cassandra.locator.NetworkTopologyStrategy
org.apache.cassandra.locator.OldNetworkTopologyStrategy
SimpleStrategy针对是一个data center中的多个存储节点(node)的存储,strategy_options表示数据存储所有存储节点(node)的复本数量,选择node的规则是在data center中按照顺时针的方向进行选择;

 

NetworkTopologyStrategy是针对多个data center的情况进行处理,这个是以防同一个data center中的所以节点同时出现问题,如掉电;

OldNetworkTopologyStrategy,这个可能会很少用上了,对data center的个数及复本的数量支持的有限,有了NetworkTopologyStrategy就不需要OldNetworkTopologyStrategy了。

详细请参看:http://www.datastax.com/docs/1.0/cluster_architecture/replication

4.3 创建column family

首先得选择我们刚才创建的keyspace:

 

use myspace;
创建column family:

 

 

create column family mycolumn               
	with key_validation_class = 'UTF8Type'    
	and comparator = 'UTF8Type'               
	and default_validation_class = 'UTF8Type';
4.4 插入及获取数据库

 

插入数据:

 

set mycolumn[1][name1]=tom;
获取数据:

 

 

get mycolumn[1];

会显示如下:

 

 

[default@myspace] get mycolumn[1];
=> (name=name1, value=tom, timestamp=1374485996562000)
Returned 1 results.
Elapsed time: 7.99 msec(s).

4.5、通过JAVA操作Cassandra

 

Hector是一个比较好的选择,完全开源,这个是GitHub的源码地址:https://github.com/rantav/hector,以下是一个基于Hector的CRUB的示例,依赖的包在Cassandra的lib目录下面就可以找到:

 

package test.cassandra;

import me.prettyprint.cassandra.serializers.StringSerializer;
import me.prettyprint.hector.api.Cluster;
import me.prettyprint.hector.api.Keyspace;
import me.prettyprint.hector.api.beans.ColumnSlice;
import me.prettyprint.hector.api.beans.Rows;
import me.prettyprint.hector.api.factory.HFactory;
import me.prettyprint.hector.api.mutation.Mutator;
import me.prettyprint.hector.api.query.MultigetSliceQuery;
import me.prettyprint.hector.api.query.QueryResult;
import me.prettyprint.hector.api.query.SliceQuery;

public class CassandraExample {

	// The string serializer translates the byte[] to and from String using
	// utf-8 encoding
	private static StringSerializer stringSerializer = StringSerializer.get();

	public static void insertData() {
		try {
			// Create a cluster object from your existing Cassandra cluster
			Cluster cluster = HFactory.getOrCreateCluster("Test Cluster", "localhost:9160");

			// Create a keyspace object from the existing keyspace we created
			// using CLI
			Keyspace keyspace = HFactory.createKeyspace("AuthDB", cluster);

			// Create a mutator object for this keyspace using utf-8 encoding
			Mutator<String> mutator = HFactory.createMutator(keyspace, stringSerializer);

			// Use the mutator object to insert a column and value pair to an
			// existing key
			mutator.insert("sample", "authCollection", HFactory.createStringColumn("username", "admin"));
			mutator.insert("sample", "authCollection", HFactory.createStringColumn("password", "admin"));

			System.out.println("Data Inserted");
			System.out.println();
		} catch (Exception ex) {
			System.out.println("Error encountered while inserting data!!");
			ex.printStackTrace();
		}
	}

	public static void retrieveData() {
		try {
			// Create a cluster object from your existing Cassandra cluster
			Cluster cluster = HFactory.getOrCreateCluster("Test Cluster", "localhost:9160");

			// Create a keyspace object from the existing keyspace we created
			// using CLI
			Keyspace keyspace = HFactory.createKeyspace("AuthDB", cluster);
			SliceQuery<String, String, String> sliceQuery = HFactory.createSliceQuery(keyspace, stringSerializer, stringSerializer, stringSerializer);
			sliceQuery.setColumnFamily("authCollection").setKey("sample");
			sliceQuery.setRange("", "", false, 4);

			QueryResult<ColumnSlice<String, String>> result = sliceQuery.execute();
			System.out.println("\nInserted data is as follows:\n" + result.get());
			System.out.println();
		} catch (Exception ex) {
			System.out.println("Error encountered while retrieving data!!");
			ex.printStackTrace();
		}
	}

	public static void updateData() {
		try {

			// Create a cluster object from your existing Cassandra cluster
			Cluster cluster = HFactory.getOrCreateCluster("Test Sample", "localhost:9160");

			// Create a keyspace object from the existing keyspace we created
			// using CLI
			Keyspace keyspace = HFactory.createKeyspace("AuthDB", cluster);

			// Create a mutator object for this keyspace using utf-8 encoding
			Mutator<String> mutator = HFactory.createMutator(keyspace, stringSerializer);

			// Use the mutator object to update a column and value pair to an
			// existing key
			mutator.insert("sample", "authCollection", HFactory.createStringColumn("username", "administrator"));

			// Check if data is updated
			MultigetSliceQuery<String, String, String> multigetSliceQuery = HFactory.createMultigetSliceQuery(keyspace, stringSerializer, stringSerializer, stringSerializer);
			multigetSliceQuery.setColumnFamily("authCollection");
			multigetSliceQuery.setKeys("sample");

			// The 3rd parameter returns the columns in reverse order if true
			// The 4th parameter in setRange determines the maximum number of
			// columns returned per key
			multigetSliceQuery.setRange("username", "", false, 1);
			QueryResult<Rows<String, String, String>> result = multigetSliceQuery.execute();
			System.out.println("Updated data..." + result.get());

		} catch (Exception ex) {
			System.out.println("Error encountered while updating data!!");
			ex.printStackTrace();
		}
	}

	public static void deleteData() {
		try {

			// Create a cluster object from your existing Cassandra cluster
			Cluster cluster = HFactory.getOrCreateCluster("Test Cluster", "localhost:9160");

			// Create a keyspace object from the existing keyspace we created
			// using CLI
			Keyspace keyspace = HFactory.createKeyspace("AuthDB", cluster);

			// Create a mutator object for this keyspace using utf-8 encoding
			Mutator<String> mutator = HFactory.createMutator(keyspace, stringSerializer);

			// Use the mutator object to delete row
			mutator.delete("sample", "authCollection", null, stringSerializer);

			System.out.println("Data Deleted!!");

			// try to retrieve data after deleting
			SliceQuery<String, String, String> sliceQuery = HFactory.createSliceQuery(keyspace, stringSerializer, stringSerializer, stringSerializer);
			sliceQuery.setColumnFamily("authCollection").setKey("sample");
			sliceQuery.setRange("", "", false, 4);

			QueryResult<ColumnSlice<String, String>> result = sliceQuery.execute();
			System.out.println("\nTrying to Retrieve data after deleting the key 'sample':\n" + result.get());

			// close connection
			cluster.getConnectionManager().shutdown();

		} catch (Exception ex) {
			System.out.println("Error encountered while deleting data!!");
			ex.printStackTrace();
		}
	}

	public static void main(String[] args) {

		insertData();
		retrieveData();
		updateData();
		deleteData();

	}
}

5、搭建及验证多节点集群

Cassandra是基于Gossip协议,水平扩展是非常的方便,增加新的节点,不需要重启服务,他们会自动发现,因页搭建单个集群的多结点,是非常简单的一件事情,只需要做几件事情:

5.1 在conf/cassandra.yaml中的“seed_provider”指定现在有的节点IP,这里的IP一定要是基于当前网卡的IP地址,而不能够是127.0.0.1之类的:

 

seeds: "192.168.26.128,192.168.2.204"
分隔符为逗号,可以同时指定多个IP;

 

5.2 指定listen_address,这个是用于监听其它节点,这里一定要写成当前节点的网站IP地址,如:192.168.26.128;

5.3 指定rpc_address,这个设置是表示在哪里监听客户端,因为某个服务器可能有多个网卡,这里可以设置为与listen_address的值一样,也可以设置为0.0.0.0,表示监听所有的网卡。

上面就完全成了一个存储节点的配置,搭建多个节点,只需要将这些这个结点上的Cassandra拷贝到新的结点服务器上去就可以了,需要做的就是修改listen_address及rpc_address为新的结点的网卡IP地址,seeds就不用修改了。

搭建这样就OK了,下面我们就验证一下了。

5.4 验证多点节集群
Cassandra自带非常好的工具接口nodetool,它通过JMX的方式将命令发送到cassandra上去执行,然后得到返回结果。当前nodetool只能够具有cassandra环境的节点上面执行,因为它需要共享cassandra本身的一些配置文件,如log4j等。执行nodetool需要带IP和JMX端口,命令格式为“nodetool -host <host> -port <JMX_PORT> <command>”,示例如下:

 

nodetool -host 192.168.26.128 -port 7199 ring
注:JMX_PORT这个变量在cassandra-env.sh里面有设置,里面可以看到值为7199,但是windows的配置文件中没有看到有,应该是默认为7199吧。
noodtool常用的命令有

 

ring — ring命令用于查看集群的节点信息,ring来源于consistent hash,在consistent hash中,各个节点组成一个环,通常称为ring。

ring命令的输出中包括当前集群的节点,各个节点的状态(Up还是Down),节点的load(数据量),节点在ring上的位置等信息。

示例输出:

 

Starting NodeTool
Note: Ownership information does not include topology; for complete information,
 specify a keyspace

Datacenter: datacenter1
==========
Address         Rack        Status State   Load            Owns                T
oken
                                                                               7
160946931665707836
192.168.26.128  rack1       Up     Normal  78.18 KB        43.86%              -
3195122621607553968
192.168.2.204   rack1       Up     Normal  81.56 KB        56.14%              7
160946931665707836

这个示例里面显示了两个节点,当前状态都是Up。

 

info — info命令用于显示一个节点的信息,包括当前的load(数据量),运行时间,内存使用情况等。

示例输出:

 

Starting NodeTool
Token            : -3195122621607553968
ID               : 1c65f178-0742-4379-bd8d-9011b9f7c4a3
Gossip active    : true
Thrift active    : true
Load             : 78.18 KB
Generation No    : 1374563151
Uptime (seconds) : 3802
Heap Memory (MB) : 18.18 / 1022.44
Data Center      : datacenter1
Rack             : rack1
Exceptions       : 0
Key Cache        : size 952 (bytes), capacity 53477376 (bytes), 43 hits, 59 requ
ests, 0.729 recent hit rate, 14400 save period in seconds
Row Cache        : size 0 (bytes), capacity 0 (bytes), 0 hits, 0 requests, NaN r
ecent hit rate, 0 save period in seconds

 cfstats — 查看各个column family的详细信息,包括读写次数、响应时间、memtable、sstable等。

 

输出比较多,就不贴示例输出了。

 

 

推荐阅读:

淘宝Cassandra测试结果

淘宝部署Cassandra集群

多节点部署Cassandra集群

 

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

posted on 2019-01-31 10:40  有没有成功  阅读(461)  评论(0编辑  收藏  举报

导航